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Tensorized Bipartite Graph Learning for
Multi-view Clustering
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Abstract—Despite the impressive clustering performance and efficiency in characterizing both the relationship between the data and
cluster structure, most existing graph-based multi-view clustering methods still have the following drawbacks. They suffer from the
expensive time burden due to both the construction of graphs and eigen-decomposition of Laplacian matrix. Moreover, none of them
simultaneously considers the similarity of inter-view and similarity of intra-view. In this article, we propose a variance-based de-correlation
anchor selection strategy for bipartite construction. The selected anchors not only cover the whole classes but also characterize the
intrinsic structure of data. Following that, we present a tensorized bipartite graph learning for multi-view clustering (TBGL). Specifically,
TBGL exploits the similarity of inter-view by minimizing the tensor Schatten p-norm, which well exploits both the spatial structure and
complementary information embedded in the bipartite graphs of views. We exploit the similarity of intra-view by using the ℓ1,2-norm
minimization regularization and connectivity constraint on each bipartite graph. So the learned graph not only well encodes discriminative
information but also has the exact connected components which directly indicates the clusters of data. Moreover, we solve TBGL by an
efficient algorithm which is time-economical and has good convergence. Extensive experimental results demonstrate that TBGL is
superior to the state-of-the-art methods. Codes and datasets are available: https://github.com/xdweixia/TBGL-MVC.

Index Terms—Multi-view clustering, bipartite graph learning, tensor Schatten p-norm.

✦

1 INTRODUCTION

IN the real word applications, each object can be usually
sensed and described from multiple views, and informa-

tion embedded in different views are complementary and
convey the common underlying clusters. Drawing the inspi-
ration from this principle, multi-view clustering (MVC) has
become an active topic in pattern analysis [1]–[7]. Spectral
clustering (SC) is one of the most representative techniques
for clustering due to its efficiency in characterizing both the
complex structure and relationship among arbitrarily shaped
data. It aims to divide graph into several disconnected sub-
graphs such that the data in the same sub-graph have high
similarity to each other, while data points in different sub-
graphs have low similarity. Based on SC, many multi-view
spectral clustering methods have been developed [8]–[10].

Although they have achieved impressive results for MVC
task, all of them involve n × n graph construction and eigen-
decomposition of Laplacian matrix whose computational
complexity are O(Vn2) and O(n3), respectively, where V and
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n are the number of views and samples, respectively. Thus,
they are inefficient or even fail in handling large-scale data
which is ubiquitous in big data era.

To this end, bipartite graph based MVC methods have
aroused widespread research interest. Bipartite graph can
well present complex mechanisms of multi-view data by
modeling the relationship between n data points and m (m
≪ n) anchors and help to reduce both the computational
complexity and storage complexity. Inspired by this, Li et
al. [11] presented a bipartite graph-based fast method for
the multi-view spectral clustering (MVSC). However, its
performance heavily depends on the manually designed
bipartite graphs of views. To cope with this problem, most
existing methods [12], [13] get the consensus bipartite graph
by linear combination of the bipartite graphs which are adap-
tively learned from the corresponding views. Despite the
impressive performance of bipartite graph based clustering
methods, (1) they cannot well encode the complementary
information and spatial structure embedded in bipartite
graphs of views, resulting in inferior results; (2) they only
consider the similarity of intra-view while neglecting the
similarity of inter-view; (3) they select anchors by random
sampling technique or K-Means which are of randomness,
resulting in an unstable and unsatisfactory performance.

To overcome the aforementioned problems, we present
a novel anchor selection scheme, termed variance-based de-
correlation anchor selection (VDA), and propose a tensorized
bipartite graph learning model for MVC (TBGL) (See Fig. 1).
Specifically, TBGL leverages the tensor Schatten p-norm
constraint [14] on the third tensor, which consists of the
bipartite graphs of views, to exploit the complementary
information and spatial structure of views. Thus, the rank of
the learned graph is very close to the target rank. By using
the regularization of ℓ1,2-norm on bipartite graphs of views,

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3187976

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on July 05,2022 at 02:48:38 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/xdweixia/TBGL-MVC


IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXX, NO. XXX, XXX XXX 2

L1,2-norm 
sparse constraint

(1)B

( )VB

=

=

+

( )VE

(1)E

Construct

(1)C(2)C( )VC

U

S

V

Laplacian rank 
constraint

Tensor Schatten p-norm 
low rank constraint

Data
points Anchors

+

(1)C

( )VC…

…

…

Fig. 1. The framework of TBGL, where B(v) is the pre-defined graph of
the v -th view; C(v) is the learned graph of the v -th view; E(v) is error.

the learned bipartite graphs well encode cluster structure and
discriminative information. Moreover, we present an efficient
optimization algorithm to solve TBGL with relatively low
computational complexity. Comparing with existing well-
studied graph based MVC methods, the contributions and
novelties of TBGL could be summarized as follows:

• We learn tensorized bipartite graph by simultaneous
considering inter-view and intra-view similarities
with tensor Schatten p-norm and ℓ1,2-norm penalty,
respectively. To our best knowledge, TBGL could be
one of the first attempts to benefit multi-view bipartite
graph learning with tensorized manner. Therefore,
TBGL could provide some novel insights to the
community of bipartite graph learning.

• To implement anchor selection stably and effectively,
we propose a novel anchor selection scheme, which
can ensure that the selected anchors not only cover
the whole classes, but also characterize the intrinsic
structure of data.

• We mathematically prove that the proposed algorithm
converges to the KKT stationary point. Experimental
results over the seven datasets indicate that TBGL
outperforms the state-of-the-art methods.

Notations: In this article, we use bold calligraphy letters
for 3rd-order tensors, e.g., D ∈ Rn1×n2×n3 ; bold upper case
letters for matrices, e.g., D; bold lower case letters for vectors,
e.g., d; and lower case letters such as dijk for the entries of
D. The i-th frontal slice of D is D(i). D is the discrete Fast
Fourier Transform (FFT) of D along the third dimension,
i.e., D = fft(D, [ ], 3). Thus, D = ifft(D, [ ], 3). The trace of
matrix D ∈ Rn×m is denoted by tr(D). The ℓ1-norm of D
is written as ∥D∥1. The ℓ1,2-norm of matrix D is written as
∥D∥2

1, 2 =
∑n

i=1 (
∑m

j=1 |Di, j|)
2 [15]–[17]. I is an identity matrix.

2 RELATED WORKS AND BACKGROUND

In this section, we firstly revisit the single-view and multi-
view bipartite graph clustering frameworks, respectively,
then, we review the previous graph based multi-view
clustering methods which are related to TBGL.

2.1 Single-view Oriented Bipartite Graph Clustering
We start with a brief review of the classical bipartite graph
clustering. Given data matrix X ∈ Rd×n with K clusters,

where d and n are the feature dimension and the number of
samples, respectively. The bipartite graph can be defined as
G = (X, A, B) [18], where A ∈ Rd×m represents the feature
matrix of m (m ≪ n) anchors; B ∈ Rn×m is the adjacency
matrix of G. Accordingly, the full adjacency matrix of the
bipartite graph is

Z =

[
0 B

BT 0

]
. (1)

Then we can calculate the normalized Laplacian matrix
L̃ of Z by L̃ = I − D− 1

2 ZD− 1
2 , where the degree matrix

D ∈ R(n+m)×(n+m) is a diagonal matrix, and Dii =
∑

j Zij. Let
P ∈ R(n+m)×K be the indicator matrix, the objective function
of the classic bipartite spectral graph partitioning [19] is

min
PTP=I

tr(PTL̃P). (2)

where the clustering labels can be obtained by applying
K-Means on the indicator matrix P.

2.2 Multi-view Oriented Bipartite Graph Clustering
Since numerous real-world data is collected from different
sources or represented by different types of features, several
forms of bipartite graph based multi-view clustering methods
are presented [11], [12], [20]. Let {X(v)}V

v=1 and {B(v)}V
v=1

denote the data matrix and adjacency matrix of the v-th
view, respectively, where X(v) ∈ Rn×dv ; B(v) ∈ Rn×m; dv and
m denote the number of feature dimensions and anchors in
the v-th view, respectively; V is the number of views. One of
the most representative multi-view clustering methods via
bipartite graph can be concisely represented as

min
PTP=I, ξ(v)

V∑
v=1

ξ(v)tr(PTL̃
(v)

P) + γR(ξ),

s.t.
V∑

v=1

ξ(v)=1, ξ(v) ≥ 0

(3)

where ξ = [ξ1, ξ2, · · · , ξ(V)] is the weighted vector; ξv is the
weight of the v-th view, it reflects the importance of the
v-th view for clustering; R(·) is a regularizer that is used
to keep the smooth of weights distribution; γ is a trade-
off parameter. L̃

(v)
=I-(D(v))- 1

2 Z(v)(D(v))- 1
2 is the normalized

Laplacian matrix of v-th view, where Z(v)=
[

0 B(v)

(B(v))T 0

]
is full adjacency matrix of the bipartite graph; the diagonal
matrix D(v) ∈ R(n+m)×(n+m) is the degree matrix of Z(v). The
optimal solution of P can be obtained by calculating the
eigenvectors corresponding to the K smallest eigenvalues of
L =

∑V
v=1 ξ

(v)L̃
(v)

.
The aforementioned method treats each row of P as a new

representation of each data point and compute the clustering
labels by employing the K-Means algorithm.

2.3 Related Works
One of the most representative methods is Co-regularized
multi-view spectral clustering (Co-reg) [8]. Co-reg executes
traditional SC on each view to obtain the view-specific indi-
cator matrix, and then learn the consensus indicator matrix
by minimizing the mismatch between indicator matrices.
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To well exploit the spatial structure and complementary
information embedded in multiple views, Xu et al. [9]
proposed low-rank tensor constrained Co-reg (LTCSPC) by
using the minimization of tensor nuclear norm based on
tensor singular value decomposition (t-SVD) [21]. Although
they have good performance, they treat all views equally,
which is not reasonable in real-word applications. To improve
the robustness of the algorithm, Nie et al. [10] adaptively
assigned the weighted values for different views and devel-
oped auto-weighted graph learning method (AMGL).

However, the performance of the aforementioned meth-
ods heavily depends on the predefined graphs of different
views. In real applications, it is very challenging to artificially
design a suitable graph for each view. This reduces the
flexibility of algorithms. For this consideration, Gao et al. [22]
adaptively learned the view-consensus graph in the low-
dimensional space by joint feature selection and adaptive
neighbours. It explicitly assumes that each data in different
views has the same neighbors. This assumption is very strict,
leading to suboptimal performance. To relax this assumption,
Zhan et al. [23] proposed multi-view graph learning for clus-
tering (MVGL), which adaptively learns graph for each view,
and then obtains a common graph by linear combination of
the local graphs. However, these two steps are independent,
which limits its performance. To tackle this problem, Nie et
al. [24] presented self-weighted multi-view graph learning
for clustering (SwMC), which integrates view-consensus
graph learning and weighs learning for different views into
a unified framework. To well exploit the complementary
information of graphs, Wu et al. [25] proposed essential tensor
learning for multi-view spectral clustering (ETLMSC), which
learned the view-consensus graph by t-SVD based tensor
nuclear norm minimization. Similarly, Xie et al. [26], [27]
made the multi-view features form a 3rd-order tensor. And
it utilized the self-representation strategy as a constraint and
enforced the tensor multi-rank minimization for clustering.

Due to the computational complexity of the aforemen-
tioned methods is squared or cubic with the data size, thus,
they are inefficient in handling big data. To improve the
efficiency of graph construction and the Laplacian matrix
eigen-decomposition, the existing works can be roughly
divided into three categories: 1) matrix compression based
methods [28], [29]; 2) kernel approximation based meth-
ods [30], [31]; 3) bipartite graph based methods [18], [19], [32]–
[34], where the bipartite graph based methods have aroused
widespread research interest. For example, Cai et al. [35] used
a small-scale bipartite graph with the size of n×m to improve
the efficiency of spectral clustering in handling large-scale
data, where m (m ≪ n) is the number of anchors. Nie et
al. [36] proposed K-Multiple-Means (KMM) by extending
K-Means with connectivity constraint. Nevertheless, all these
methods are single-view oriented.

Recently, bipartite graphs based MVC methods have been
emerging [13], [20], [37]. For example, Wang et al. proposed a
fast multi-view subspace clustering method with consensus
anchor guidance (FPMVS-CAG) [38], which simultaneously
carries out anchor optimization and subspace bipartite graph
construction. However, the clustering and graph learning are
two independent processes, which limits the performance of
FPMVS-CAG. To solve this problem, Li et al. [13] proposed a
scalable and parameter-free multi-view clustering (SFMC) via

the self-weighted graph fusion framework. SFMC integrates
the Laplacian rank constraint and multi-view bipartite graph
learning into a unified framework such that the learned
graph has K-connected components. Thus, clustering results
can be directly obtained by the connectivity of the learned
graph. Despite the good performance of the aforementioned
bipartite based MVC, they fail to simultaneously consider
the inter-view and intra-view similarities. To cope with
this issue, the proposed TBGL minimizes tensor Schatten
p-norm and ℓ1,2-norm constraints on graphs which not only
helps to explore the exploits the complementary information
embedded in graphs of views, but also helps to encode
discriminative information.

3 THE PROPOSED TBGL
3.1 Problem Formulation and Objective
As the analyzed above, the existing bipartite graph based
multi-view clustering methods have suffered from three
main issues: (1) They cannot well explore both the com-
plementary information and spatial structure embedded in
bipartite graphs of different views. (2) They aim to learn
the graph embedding of data from the multiple pre-defined
bipartite graphs. However, the pre-defined bipartite graphs
were built on random sampling or K-Means, which fails
to capture the non-convex data distribution. (3) None of
them simultaneously considers the similarity of the inter-
view, which well exploits the complementary information
embedded in graphs of views, and the similarity of intra-
view which exploits the cluster structure of data.

To this end, we target at adaptively learning a new
bipartite graph C(v) ∈ Rn×m such that it well characterizes
both the cluster structure and the relationship between m (m
≪ n) anchors and n data points in the v-th view. Meanwhile,
we aim at getting an implicitly view-consensus graph. It
well explores the complementary information embedded
in different views and has exactly K connected components,
where K denotes the number of clusters. Thus, we can directly
get the cluster labels.

To better formulate the objective function of TBGL, we
first introduce Lemma 1 [39] and Definition 1.
Lemma 1. [39] The multiplicity K of the eigenvalue zeros of

L̃
(v)

is equals to the number of connected components in
the nonnegative graph associated with F(v).

Remark 1. The graph F(v) is a block anti-diagonal matrix,
which is composed of the matrix C(v) and its transposed
matrix (C(v))T. Thus, F(v) and C(v) has the same number
of connected components.

Definition 1. [14] Given C ∈ Rn1×n2×n3 , h = min(n1, n2),
tensor Schatten p-norm of tensor C is defined as

∥C∥ Sp⃝ = (
n3∑

v = 1

∥C(v)∥p
Sp⃝)

1
p = (

n3∑
v = 1

h∑
j = 1

σj(C
(v)
)p)

1
p (4)

where 0 < p ≤ 1, σj(C
(v)
) is the j-th singular value of C(v)

.

According to Lemma 1, if rank(L̃
(v)
) = n + m − K, then

the corresponding graph C(v) has K connected components.
Moreover, considering different views have different contri-
bution for clustering, we adaptively assign weight 1

ξ(v) for
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Fig. 2. Construction of tensor C ∈ Rn×V×m. Ψ(j) denotes the j-th frontal
slice of C (j ∈ {1, 2, · · · , m}).

the Laplacian matrix of the v-th view. Then the weighted
Laplacian matrix satisfies rank(L̃C) = n+m−K. In this case,
the implicitly view-consensus graph C =

∑V
v=1

C(v)

ξ(v)

/∑V
v=1

1
ξ(v)

has K-connected components. Then we can directly obtain the
final clustering labels based on the connectivity of C without
extra post-processing. For these purposes, we propose the
following multi-view bipartite graph learning model:

min
C(v), E(v), ξ(v)

∥C∥pSp⃝ + α
V∑

v=1

∥E(v)∥1 + γ
V∑

v=1

∥C(v)∥2
1, 2

s.t. B(v) = C(v) + E(v), C(v) ≥ 0, C(v)1 = 1

rank(L̃
(v)
) = n + m − K,

V∑
v=1

ξ(v) = 1, ξ(v) ≥ 0

(5)

where C ∈ Rn×V×m, i.e., C(:, v, :) = C(v); E(v) is the error
matrix of v-th view. L̃

(v)
= I−D− 1

2
F(v) F(v)D− 1

2
F(v) is the normalized

Laplacian matrix of F(v) ∈ R(n+m)×(n+m), which is defined

as F(v) =

[
C(v)

(C(v))T

]
. DF(v) is a diagonal matrix whose

diagonal elements are DF(v) (i, i) =
∑n+m

j=1 F(v)(i, j); α and γ are
two trade-off parameters.

Remark 2. [The intuition and benefits of tensor Schatten p-
norm] Take the matrices for example, suppose σ1, . . . , σh
represents the singular values of matrix C ∈ Rn1×n2 in the
descending order, thus, when p > 0, the Schatten p-norm
of C is ∥C∥p

Sp⃝ = σ
p
1 + · · ·+ σ

p
h . When p → 0, we can see

lim
p→0

∥C∥p
Sp⃝ = #{i: σi ̸= 0} = rank(C). Thus, comparing

with existing nuclear norm, i.e., p = 1, Schatten p-norm
minimization (which is a quasi-norm) can ensure the
rank of the C more easily approximates the target rank.
As shown in Fig. 2, for tensor C, the j-th frontal slice
Ψ(j) characterize the relationship between n samples and
the j-th anchor in different views. The goal of multi-view
learning is that C(1)

:,j , · · · ,C(V)
:,j are as similar as possible,

ideally. Moreover, there has a large difference between
cluster structures of different views in practice. Thus,
tensor Schatten p-norm constraint on C can make sure
that Ψ(j) has spatial low-rank structure, which helps
exploit the complementary information embedded in
inter-views and get the view-consensus graph.

Remark 3. [The benefit of ℓ1,2-norm] In the model (5), by
imposing the ℓ1,2-norm penalty on C(v), as γ increases, in
each C(v)

i, 1, · · · , C(v)
i, m of the i-th row C(v)

i , at least one compo-
nent remains non-zero. By doing so, some discriminative
components remain non-zero to provide certain flexibility
in the learned graph C(v), i.e., making C(v) well encode the
discriminative information and cluster structure.

3.2 Optimization

To solve the model (5), it is difficult to directly cope with the
Laplacian rank constraint, i.e., rank(L̃

(v)
) = n+m−K, which

is a non-convex optimization problem. We can relax the rank
constraint in the following way:

∥L̃
(v)
∥rank=n+m-K = min

n+m∑
j = n+m-K+1

σj(L̃
(v)
) (6)

where σj(L̃
(v)
) denotes the j-th singular value of L̃

(v)
, and all

singular values of L̃
(v)

are sorted in descending order, i.e.,
σ1(L̃

(v)
) ≥ σ2(L̃

(v)
) ≥ · · · ≥ σn+m(L̃

(v)
) . If the right side of Eq.

(6) is zero, then rank(L̃
(v)
) = n + m − K. To tackle Eq. (6), we

first introduce the following theorem.

Theorem 1. [40] If Π ∈ Rn×n is a real symmetric matrix, then

min
pT

i pj=

{
1, i = j
0, i ̸=j

r∑
ℓ= 1

pT
ℓΠpℓ = min

PTP=I
tr(PTΠP)

= λn-r+1 + · · ·+ λn

=
n∑

ℓ=n-r+1

φT
ℓΠφℓ = tr(ΩTΠΩ)

(7)

where Ω = [φn-r+1, · · · , φn], and λ1 ≥ · · · ≥ λn are n
eigenvalues of Π. φ1, · · · , φn are the orthonormal eigen-
vectors corresponding to λ1, λ2, · · · , λn, respectively.

Since the Laplacian matrix L̃
(v)

is a positive semi-definite
and real symmetric matrix, its eigenvalues and singular
values are identical. According to Theorem 1, we have

n+m∑
j = n+m-K+1

σj(L̃
(v)
) = min

PTP=I
tr(PTL̃

(v)
P) (8)

where P = [p1; · · · ; pn + m] ∈ R(n + m)×K is the indicator
matrix of the v-th view. Then, the model (5) is equivalent to
the following problem:

min
C(v), E(v)

P, ξ(v)

∥C∥pSp⃝ + α
V∑

v=1

∥E(v)∥1 + γ
V∑

v=1

∥C(v)∥2
1, 2 + βtr(PTL̃CP)

s.t. B(v) = C(v) + E(v),
V∑

v=1

ξ(v) = 1, ξ(v) ≥ 0

C(v)1 = 1, C(v) ≥ 0, PTP = I
(9)

where L̃C =
∑V

v=1
1
ξ(v) L̃

(v)
; β is a hidden parameter, which

is adaptively updated as follows. We first initialize β with
a small value, and update it according to the number of
eigenvalue zero of L̃C after each iteration. If this number is
smaller than K, β is multiplied by 2; if it is greater than K+1,
β is divided by 2; otherwise we terminate the iterations.
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Inspired by the augmented Lagrange multiplier method,
we introduce the auxiliary variables J and O(v), and rewrite
the model (9) as the following unconstrained problem:

L(C(1), · · · , C(V), J , O(1), · · · , O(V), E(1), · · · , E(V), P)

= ∥J ∥pSp⃝ + α
V∑

v=1

∥E(v)∥1 + γ
V∑

v=1

∥O(v)∥2
1, 2 + βtr(PTL̃CP)

+
V∑

v=1

(⟨Y(v)
3 , C(v) − O(v)⟩+ τ

2
∥C(v) − O(v)∥2F )

+
V∑

v=1

(⟨Y(v)
1 , B(v) − E(v) − C(v)⟩+ µ

2
∥B(v) − E(v) − C(v)∥2F )

+ ⟨Y2,C −J ⟩+ ρ

2
∥C −J ∥2F

(10)
where Y1

(v), Y2 and Y3
(v) represent Lagrange multipliers;

µ, ρ and τ are the penalty parameters. Consequently, the
optimization process could be separated into five steps:

• Solving P with fixed C(v), E(v), O(v), ξ(v) and J . In this
case, the optimization w.r.t. P in Eq. (10) becomes

P∗ = arg min
PTP=I

tr(PTL̃CP) (11)

where L̃C =
V∑

v=1

1
ξ(v)

(
I − D− 1

2
F(v) F(v)D− 1

2
F(v)

)
.

To directly optimize Eq. (11), the computational complex-
ity is O((n+m)2K), resulting in failing to deal with large
scale multi-view clustering. Instead of doing this, we herein
provide an efficient algorithm. Substituting L̃C into Eq. (11),
and by using some simple matrix algebra, it is ready to see

tr(PTL̃CP) =
V∑

v=1

1

ξ(v) [tr(P
TP)− tr(PTD− 1

2

F(v) F(v)D− 1
2

F(v) P)] (12)

Since PTP = I, then, Eq. (11) can be rewritten as

max
PTP=I

V∑
v=1

1

ξ(v) tr(P
TD− 1

2

F(v) F(v)D− 1
2

F(v) P). (13)

Let P = [PU, PM]
T and D(v)

F = diag(D(v)
U , D(v)

M ), where PU ∈
Rn×K is the first n rows of P and PM ∈ Rm×K is the remaining
m rows of P, D(v)

U ∈ Rn×PU and D(v)
M ∈ Rm×m are diagonal

matrices whose diagonal elements are D(v)
U (i, i)=

∑m
j=1 C(v)(i, j)

and D(v)
M (j, j)=

∑n
i=1 C(v)(i, j). Substituting them into Eq. (13),

and from some simple matrix algebra, Eq. (13) becomes

P∗ = arg max
PT

UPU+PT
MPM=I

2tr(PT
UWPM). (14)

where W =
∑V

v=1
C(v)D(v)

M

− 1
2

ξ(v) . The optimal solution P∗ in Eq.
(14) can be efficiently obtained by Theorem 2.

Theorem 2. Suppose W ∈ Rn×m, PU ∈ Rn×K, PM ∈ Rm×K.
The optimal solutions to the following model:

max
PT

UPU+PT
MPM=I

tr(PT
UWPM) (15)

are PU =
√
2
2 U1, PM =

√
2
2 V1, where U1 and V1 are

the leading K left and right singular vectors of W,
respectively.

According to Theorem 2, we have that the computational
complexity is O(Vnm + m2n) for solving the optimal solution
P∗. Compared with directly solving Eq. (11) whose compu-
tational complexity is O((n+m)2K), TBGL is very efficient to
handle large-scale multi-view data due to m ≪ n. The proof
of Theorem 2 is in Appendix A.

• Solving C(v) with fixed E(v), J , O(v), ξ(v) and P. Now,
the optimization w.r.t. C(v) in Eq. (10) is equivalent to

min
C(v)

⟨Y(v)
2 , C(v) − J(v)⟩+ ρ

2
∥C(v) − J(v)∥2F + βtr(PTL̃CP)

+
V∑

v=1

(⟨Y(v)
3 , C(v) − O(v)⟩+ τ

2
∥C(v) − O(v)∥2F )

+ ⟨Y(v)
1 , B(v) − E(v) − C(v)⟩+ µ

2
∥B(v) − E(v) − C(v)∥2F

s.t. C(v)1 = 1,C(v) ≥ 0
(16)

According to Eq. (14), the last term in Eq. (16) can be
rewritten as

tr(PTL̃P) = Constant − 2
V∑

v=1
tr(C(v)T

H(v)T
) (17)

where H(v)T
=

D(v)
M

− 1
2

ξ(v) PMPT
U . Substituting Eq. (17) into Eq.

(16), and by some simple matrix algebra, Eq. (16) becomes

min
C(v)

ρ+µ+τ
2

∥C(v) − Λ

ρ+µ+τ
∥2F , s.t. C(v)1 = 1, C(v) ≥ 0

(18)
where Λ = ρG(v)+µQ(v)+τΥ(v)+2βH(v)T

; G(v)=J(v)− 1
ρY(v)

2 ;
Υ(v)=O(v)− 1

τ Y(v)
3 ; Q(v) = B(v) − E(v) + 1

µY(v)
1 . To this end, the

closed-form solution C(v)∗ is c(v)∗

i = ( Λi

ρ+µ+τ + γ1)+ [41],
where γ is the Lagrangian multiplier.

• Solving E(v) with fixed C(v), J , P and ξ(v). In this case,
the optimization w.r.t. E(v) in (10) becomes

E(v)∗ = argmin
E(v)

α

µ
∥E(v)∥1 +

1

2
∥E(v) − Γ(v)∥2F (19)

where Γ(v) = B(v) − C(v) + 1
µY(v)

1 . The optimal solution of Eq.
(19) is Sα

µ
[Γ(v)], where Sα

µ
[x] = sign(x) = max(|x| − α

µ , 0) is
the soft-thresholding operator [42].

• Solving O(v) with fixed E(v), J , C(v), ξ(v) and P. Now,
the optimization w.r.t. O(v) in Eq. (10) is equivalent to

O(v)∗ = arg min
O(v)

2γ

τ
∥O(v)∥21, 2 +

1

2
∥O(v) − (C(v) +

Y(v)
3

τ
)∥2F

(20)
The optimal solution of Eq. (20) can be computed by [15].
• Solving J with fixed C(v), E(v), P and ξ(v). In this case,

J can be solved by

J ∗ = argmin
J

∥J ∥pSp⃝ + ⟨Y1,C −J ⟩+ ρ

2
∥C −J ∥2F

= argmin
J

1

ρ
∥J ∥pSp⃝ +

1

2
∥C +

Y2

ρ
−J ∥2F

(21)

To solve Eq. (21), we first introduce the Theorem 3 [14].
Theorem 3. [14] Suppose Z ∈ Rn1×n2×n3 , h = min(n1, n2),

let Z = U ∗ S ∗ VT . For the following model:

argmin
X

1

2
∥X −Z∥2F + τ∥X∥pSp⃝ (22)
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Fig. 3. Illustration of Variance-based De-correlation Anchor selection (VDA).

Algorithm 1: Procedure for solving TBGL

Input: Data matrices: {X(v)}V
v=1 ∈ Rn×dv , anchors

number m, and cluster number K, α.
Output: Graph C with K-connected components.

1 Select anchors {A(v)}V
v=1 ∈ Rm×dv by Algorithm 2;

2 Construct bipartite graphs {B(v)}V
v=1 ∈ Rn×m;

3 Initialize C(v)=B(v), E(v) = 0, Y(v)
1 =0, Y2=0, J =0,

ρ=10-5, µ=10-5, η=1.1, ξ(v) = 1/V;
4 while not converge do
5 Update P by solving Eq. (14);
6 Update {C(v)}V

v=1 by solving Eq. (18);
7 Update {E(v)}V

v=1 by solving Eq. (19);
8 Update {O(v)}V

v=1 by solving Eq. (20);
9 Update J by using Eq. (24);

10 Update ξ(v) by using Eq. (28);
11 Update Y(v)

1 , Y2, Y(v)
3 , µ, ρ and τ :

Y(v)
1 := Y(v)

1 + µ(B(v) − C(v) − E(v)), µ=ηµ,
Y2 := Y2 + ρ(C −J ), ρ := ηρ,
Y(v)

3 =Y(v)
3 + τ(C(v) − O(v)), τ=ητ ;

12 end
13 Directly achieve the K clusters based on the

connectivity of C =
∑V

v=1
C(v)

ξ(v) /
∑V

v=1
1
ξ(v) ;

14 return: Clustering results.

the optimal solution X ∗ is

X ∗ = Γτ ·n3
(Z) = U ∗ ifft(Pτ ·n3

(Z)) ∗ VT (23)

where Pτ ·n3(Z) ∈ Rn1×n2×n3 is a tensor with the i-th
frontal slice Pτ ·n3

(Z(i)
) whose elements can be obtained

by using the GST algorithm in Lemma 1 of [14].

According to Theorem 3, the solution of Eq. (21) is

J ∗=Γ 1
ρ
(C +

1

ρ
Y2). (24)

• Solving ξ(v) with fixed other variables. In this case, the
optimization w.r.t. ξ(v) in Eq. (10) is equivalent to

min
ξ(v)

V∑
v=1

tr(PTL̃F(v) P)
ξ(v) , s.t.

V∑
v=1

ξ(v) = 1, ξ(v) ≥ 0 (25)

Let △(v) =
√
tr(PTL̃F(v) P), (25) becomes

min
ξ(v)

V∑
v=1

△(v)2

ξ(v) , s.t.
V∑

v=1

ξ(v) = 1, ξ(v) ≥ 0 (26)

Due to
∑V

v=1 ξ
(v) = 1, according to Cauchy-Schwartz’s

inequality, we have

V∑
v=1

△(v)2

ξ(v) =

(
V∑

v=1

△(v)2

ξ(v)

)(
V∑

v=1

ξ(v)

)
⩾

(
V∑

v=1

△(v)

)2

(27)

where equality holds iff
√
ξ(v) ∝ △(v)√

ξ(v)
. Moreover, the right-

hand side of Eq. (27) is a constant, therefore ∀v = 1, 2, · · · , V ,
the optimal ξ(v) is

ξ(v) = △(v)/
V∑

v=1

△(v) (28)

Finally, the optimization procedure for solving Eq. (5) is
outlined in Algorithm 1. The proof of Convergence Analysis
is in Appendix B.

4 ANCHOR SELECTION AND DISCUSSION

4.1 Anchor Selection

Given multi-view data matrices {X(v)}V
v=1 ∈ Rn×dv , the

way to construct adjacency matrices {B(v)}V
v=1 ∈ Rn×m for

multiple views is crucial. The core of the bipartite graphs
construction is sampling m (m ≪ n) representative data
points, i.e., anchors, from all sample points. The random
sampling technique and the K-Means algorithm are two of
the most representative strategies to select anchors [43], [44].
The random sampling technique randomly selects m data
points from all samples as anchors. Despite being simple
and efficient, the results of selected anchor points are of
being occasional which leads to unstable and unsatisfactory
clustering results. By contrast, the K-Means based anchor
selection strategy directly leverages m centroids as anchors.
As we all know, K-Means is sensitive to the initial centroids,
and needs to be run many times independently to eliminate
the randomness of results like random sampling. Generally
speaking, the ideal anchors should have the following
characteristics: 1) they should well cover the whole classes of
data and characterize the intrinsic structure of data; 2) they
should cover the entire data point clouds evenly.

Principal component analysis (PCA) [45] is one of the
most representative data representation techniques. It can
extract the m ≪ d most expressive features, where d is
the dimension of the raw sample. This well characterizes
both the whole original dimensional space and all classes,
by selecting projection directions corresponding to the first
m largest variances. Inspired by this, we leverage PCA to
extract m most representative samples by viewing the sample
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Algorithm 2: Procedure for VDA

Input: Data matrices: {X(v)}V
v=1 ∈ Rn×dv , anchors

number m.
Output: The anchor matrices: {A(v)}V

v=1 ∈ Rm×dv .
1 Obtain X by concatenating {X(v)}V

v=1;
2 Calculate the variance Θ = [θ1, θ2, · · · , θn] of

d-dimensional features of each sample;
3 Normalize Θ, Ind = arg max

i
θi, a(v)

1 = x(v)
Ind;

4 for j = 2: m do
5 Calculate δi between θi and θInd by Eq. (31);
6 Update θi by Eq. (32);
7 Normalize Θ, Ind = arg max

i
θi, a(v)

j = x(v)
Ind;

8 end
9 return: Selected m anchors A(v) of v-th view.

space and dimensional space as dimensional space and
sample space, respectively. But it fails for large-scale data
due to the high computational complexity of finding the
projection directions. The features of each original sample
reflect the intrinsic representation of objects to some extent.
Based on this, we propose a novel anchors selection scheme
(namely Variance-based De-correlation Anchor selection,
VDA), which is simple and efficient. VDA views the features
of the i-th sample as the embedding of the i-th projection
direction, and selects the m representative data points
according to their variance in the dimension space. It avoids
finding the projection direction.

A naive scheme is to select m representative points
corresponding to the first m largest variances. However, it
cannot ensure the selected anchors well denote all points and
cover all entire point cloud of data. The reason is that, in real
applications, there are high correlation among samples. Thus
the samples close to each other in the feature space provide
little additional information. The anchor points should well
cover the whole classes of data and characterize the intrinsic
structure of data. To this end, our strategy follows the above
principle to alternately select according to the correlation
among samples, as illustrated in Fig. 3. Specifically, given
data matrices {X(v)}V

v=1, we first concatenate the data ma-
trix of each view along the feature dimension. Thus, the
connected feature matrix X ∈ Rn×d can be represented
as X = [X(1); X(2); · · · ; X(v)], where d =

∑V
v = 1 dv is the

dimension of connected feature matrix. Then the variance θi
of the d-dimensional features of i-th sample can be calculated
by using

θi = Var(xi), (29)

where Var( · ) represents the calculating the variance; Θ =
[θ1, θ2, · · · , θn] ∈ Rn is the variance vector. After that, we
normalize the score vector by dividing the largest score. Since
the data point with large variance contains more information,
we choose the data point with the largest score as the initial
anchor point by solving

Ind = arg max
i

θi. (30)

Thus, the 1-st anchor in the v-th view is a(v)
1 = x(v)

Ind.
Noting that there are high correlation among the samples.

And the samples close to each other in the feature space

provide little additional information. To maximize the quan-
tity of information provided by the selected anchors, we
consider the correlation among samples. Let θIndex denote
the variance of the anchors selected from the previous round,
the correlation δi between θIndex and θi can be calculated as

δi =
1

1 + ∥θIndex − θi∥2
, (31)

where δ = [δ1, δ2, · · · , δn] ∈ Rn is the correlation vector.
Then we update the variance θi of the i-th sample by using

θi = θi × (1− δi) (32)

By leveraging this strategy, the data points with extremely
high or low variance values would diminish, whereas the
data points with medial scores would be exaggerated fairly
in the next round. So the next selected anchor is of little
chance being in the same clusters with the current selected
anchor. Moreover, the variance of the selected data point is
updated to 0, since we always select the sample with the
highest variance θi. Therefore none of anchors can be chosen
repeatedly.

After that, we normalize the updated score vector by
dividing the largest score, the index of j-th anchor can be
obtained by Eq. (30). Thus, the j-th anchor in the v-th view
is a(v)

j = x(v)
Ind. We alternately execute Eqs. (31 - 32) until m

anchors are selected. We denote the selected m anchors of
v-th view as A(v) ∈ Rm×dv . The procedure for the proposed
VDA is outlined in Algorithm 2.

Compared with the K-Means and random sampling
technique based anchor selection strategies, VDA can provide
more excellent performance for the large-scale data in the
following aspects:

1) VDA does not require random initialization. So VDA
can achieve stable anchor selection results.

2) Taking the correlation of the samples into considera-
tion, VDA can ensure that the selected anchors not
only cover the whole classes, but also characterize
the intrinsic structure of data.

After obtaining m anchors, i.e., A(v) for each view, we
can construct the adjacency matrix B(v) by using many
methods [18], [36], [46]. We herein leverage KMM [36] to
construct B(v) for each view.

TABLE 1
Storage complexity of TBGL, where V, n, m, K are the number of views,

samples, anchors, and clusters, respectively

Variable {C(v),E(v),O(v),Y(v)
1 ,Y(v)

3 }V
v= 1 P J Y2

Complexity O((n + m)K) O(5Vnm) O(Vnm) O(Vnm)

Total O [n(7Vm + K) + mK]

4.2 Computational and Storage Complexities Analysis
Computational complexity: TBGL consists of two stages: 1)
construction of graphs {B(v)}V

v=1, 2) optimization by iterative
solving Eq. (10). The first stage takes O(Vnmd+Vnmlog(m))
time, where V, m and n are the number of views,
anchors and samples, respectively. The second stage
mainly focuses on five variables (C(v), J , O(v), E(v), P).
The complexity in updating these variables iteratively
are O(VnmK+Vnmlog(m)), O(Vnmlog(Vn)+V2mn), O(Vnm),
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TABLE 2
The clustering performances on MSRC-v5 and Handwritten4 datasets

Dataset MSRC

Metric ACC NMI Purity PER REC F-score ARI

s-CLR (best) [41] 0.681±0.000 0.608±0.000 0.710±0.000 0.478±0.000 0.707±0.000 0.570±0.000 0.471±0.000
s-CLR-C [41] 0.590±0.000 0.509±0.000 0.614±0.000 0.451±0.000 0.482±0.000 0.466±0.000 0.377±0.000

Co-reg [8] 0.635±0.007 0.578±0.006 0.659±0.006 0.511±0.008 0.535±0.007 0.522±0.007 0.425±0.030
SwMC [24] 0.776±0.000 0.774±0.000 0.805±0.000 0.687±0.000 0.831±0.000 0.752±0.000 0.708±0.000
MVGL [23] 0.690±0.000 0.663±0.000 0.733±0.000 0.466±0.000 0.715±0.000 0.564±0.000 0.476±0.000
MVSC [11] 0.794±0.075 0.672±0.058 0.756±0.071 0.585±0.091 0.779±0.035 0.664±0.062 0.600±0.079
AMGL [10] 0.751±0.078 0.704±0.044 0.789±0.056 0.621±0.090 0.744±0.026 0.674±0.063 0.615±0.079
RMSC [47] 0.762±0.040 0.663±0.026 0.769±0.030 0.640±0.030 0.660 ±0.034 0.650±0.031 0.592±0.036

CSMSC [48] 0.758±0.007 0.735±0.010 0.793±0.008 0.736 ±0.014 0.673 ±0.008 0.703±0.010 0.653±0.012
SFMC [13] 0.810±0.000 0.721±0.000 0.810±0.000 0.657±0.000 0.782±0.000 0.714±0.000 0.663±0.000

t-SVD-MSC [26] 0.967±0.000 0.936±0.000 0.967±0.000 0.932±0.000 0.938±0.000 0.935±0.000 0.924±0.000
ETLMSC [25] 0.962±0.000 0.937±0.000 0.962±0.000 0.926±0.000 0.931±0.000 0.928±0.000 0.917±0.000
LTCSPC [9] 0.981±0.000 0.957±0.000 0.981±0.000 0.962±0.000 0.962±0.000 0.962±0.000 0.956±0.000

TBGL-C 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
TBGL 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000

Dataset HW

Metric ACC NMI Purity PER REC F-score ARI

s-CLR (best) [41] 0.698±0.000 0.731±0.000 0.731±0.000 0.592±0.000 0.803±0.000 0.681±0.000 0.640±0.000
s-CLR-C [41] 0.759±0.000 0.751±0.000 0.760±0.000 0.610±0.000 0.865±0.000 0.716±0.000 0.678±0.000

Co-reg [8] 0.784±0.010 0.758±0.004 0.795±0.008 0.698±0.010 0.724±0.005 0.710±0.007 0.667±0.037
SwMC [24] 0.758±0.000 0.833±0.000 0.792±0.000 0.686±0.000 0.867±0.000 0.766±0.000 0.737±0.000
MVGL [23] 0.811±0.000 0.809±0.000 0.831±0.000 0.721±0.000 0.826±0.000 0.770±0.000 0.743±0.000
MVSC [11] 0.796±0.059 0.820±0.030 0.808±0.044 0.715±0.082 0.838±0.035 0.769±0.046 0.741±0.053
AMGL [10] 0.704±0.045 0.762±0.040 0.732±0.042 0.591±0.081 0.781±0.022 0.670±0.060 0.628±0.070
RMSC [47] 0.681±0.043 0.661±0.022 0.713±0.037 0.582±0.035 0.617±0.026 0.599±0.030 0.533±0.034

CSMSC [48] 0.806±0.001 0.793±0.001 0.867±0.001 0.778±0.001 0.743±0.001 0.760±0.001 0.733±0.001
SFMC [13] 0.853±0.000 0.871±0.000 0.873±0.000 0.775±0.000 0.910±0.000 0.837±0.000 0.817±0.000

t-SVD-MSC [26] 0.988±0.000 0.972±0.000 0.988±0.000 0.976±0.000 0.976±0.000 0.976±0.000 0.974±0.000
ETLMSC [25] 0.938±0.001 0.893±0.001 0.938±0.001 0.886±0.001 0.890±0.001 0.888±0.001 0.876±0.001
LTCSPC [9] 0.988±0.000 0.973±0.000 0.988±0.000 0.975±0.000 0.975±0.000 0.975±0.000 0.972±0.000

TBGL-C 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
TBGL 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000

O(Vnm) and O(Vnm+m2n), where K and t are the number of
clusters and iteration, respectively. For m ≪ n, the main com-
plexity in this stage is O(m2nt+Vnmtlog(Vn)). Therefore, the
main computational complexity of TBGL is O(m2nt+Vnmd),
which is linear to n.

Storage complexity: During the optimization procedure,
TBGL needs to store {C(v),E(v),O(v),Y(v)

1 ,Y(v)
3 }V

v= 1, P, J and
Y2, their corresponding storage complexities are shown
in Table 1. Thus, the storage complexity of TBGL is
O [n(7Vm + K) + mK], which is much less than that of t-
SVD-MSC and ETLMSC with O [n(3Vn + 2Vd)] and O(3Vn2),
respectively, since m ≪ n in practice.

5 EXPERIMENTS

In this section, we conduct extensive experiments to verify
the effectiveness of TBGL and other multi-view clustering
methods. We run all experiments on a standard Windows 10
Server with two Intel (R) Xeon (R) Gold 6230 CPUs 2.1 GHz
and 128 GB RAM, MATLAB R2020a.

5.1 Experimental Setup

Datasets: We use the following three synthetic toy datasets
and seven real-world datasets to make experiments:

1) Two-moon dataset [36] has 2 clusters. For the bal-
anced two-moon dataset, each cluster has 200 data
points. The unbalanced two-moon dataset has a total
of 300 data points. One class has 100 data points and
the other class has 200 data points.

2) Three-ring [13] dataset has 3 clusters. For the bal-
anced three-ring dataset, each cluster has 200 data
points. For the unbalanced three-ring dataset, there
are 650 data points, where three clusters have 50, 200
and 400 data points, respectively.

3) Synthetic dataset [13] has 3 views, each view is a
synthetic block diagonal graph. The 1st and 2nd
views have two diagonal blocks with different cluster
structure, respectively; the 3rd view only includes
Gaussian noise. The graph of each view adds the
uniform random noise.

4) MSRC-v5 (MSRC) [49] includes 7 kinds of objects
with 210 images. We choose 24-dimension (D) CM
feature, 576-D HOG feature, 512-D GIST feature, 256-
D LBP feature, 254-D CENT feature as 5 views.

5) Handwritten4 (HW) [50] has 10 digits with 2,000
images from UCI machine learning repository. 76-D
FOU feature, 216-D FAC feature, 47-D ZER feature
and 6-D MOR feature are employed as 4 views.

6) Mnist4 [51] includes 4 categories handwritten digits,
i.e., from digit 0 to digit 3, with 4, 000 images. We
utilize 30-D ISO feature, 9-D LDA feature and 30-D
NPE feature as 3 views.

7) Caltech101-20 (Cal101) [52] has 20 categories with
2,386 images. It is a subset of Caltech101 datasets.
We employ 48-D GABOR feature, 40-D WM feature,
254-D CENT feature, 1, 984-D HOG feature, 512-D
GIST feature and 928-D LBP feature as 6 views.

8) NUS-WIDE (NUS) [53] has 31 categories with 30,000
object images. 64-D CH feature, 225-D CM feature,
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TABLE 3
The clustering performances on Mnist4 and Caltech101-20 datasets

Dataset Mnist4

Metric ACC NMI Purity PER REC F-score ARI

s-CLR (best) [41] 0.843±0.000 0.762±0.000 0.744±0.000 0.640±0.000 0.824±0.000 0.721±0.000 0.655±0.000
s-CLR-C [41] 0.897±0.000 0.747±0.000 0.897±0.000 0.813±0.000 0.822±0.000 0.817±0.000 0.756±0.000

Co-reg [8] 0.785±0.003 0.602±0.001 0.786±0.002 0.670±0.002 0.696±0.002 0.682±0.001 0.575±0.002
SwMC [24] 0.914±0.000 0.799±0.000 0.912±0.000 0.844±0.000 0.852±0.000 0.848±0.000 0.799±0.000
MVGL [23] 0.912±0.000 0.785±0.000 0.910±0.000 0.795±0.000 0.804±0.000 0.800±0.000 0.733±0.000
MVSC [11] 0.733±0.115 0.651±0.069 0.780±0.070 0.650±0.092 0.773±0.041 0.704±0.066 0.592±0.096
AMGL [10] 0.910±0.000 0.785±0.000 0.910±0.000 0.836±0.000 0.843±0.000 0.840±0.000 0.786±0.000
RMSC [47] 0.705±0.000 0.486±0.000 0.705±0.000 0.590±0.000 0.606±0.000 0.598±0.000 0.462±0.000

CSMSC [48] 0.643±0.000 0.645±0.010 0.832±0.008 0.776±0.014 0.612±0.008 0.684±0.010 0.562±0.012
SFMC [13] 0.917±0.000 0.801±0.000 0.917±0.000 0.846±0.000 0.855±0.000 0.852±0.000 0.802±0.000

t-SVD-MSC [26] 0.653±0.000 0.657±0.000 0.743±0.000 0.625±0.000 0.802±0.000 0.703±0.000 0.587±0.000
ETLMSC [25] 0.934±0.000 0.847±0.000 0.934±0.000 0.878±0.000 0.885±0.000 0.881±0.000 0.842±0.000
LTCSPC [9] 0.929±0.000 0.813±0.000 0.929±0.000 0.863±0.000 0.869±0.000 0.866±0.000 0.821±0.000

TBGL-C 0.930±0.000 0.841±0.000 0.930±0.000 0.869±0.000 0.878±0.000 0.874±0.000 0.831±0.000
TBGL 0.938±0.000 0.859±0.000 0.938±0.000 0.884±0.000 0.890±0.000 0.887±0.000 0.849±0.000

Dataset Cal101

Metric ACC NMI Purity PER REC F-score ARI

s-CLR (best) [41] 0.442±0.000 0.269±0.000 0.492±0.000 0.198±0.000 0.745±0.000 0.313±0.000 0.076±0.000
s-CLR-C [41] 0.596±0.000 0.429±0.000 0.653±0.000 0.313±0.000 0.817±0.000 0.453±0.000 0.285±0.000

Co-reg [8] 0.412±0.006 0.587±0.003 0.754±0.004 0.712±0.008 0.243±0.004 0.363±0.006 0.295±0.025
SwMC [24] 0.599±0.000 0.493±0.000 0.700±0.000 0.509±0.000 0.625±0.000 0.431±0.000 0.265±0.000
MVGL [23] 0.600±0.000 0.474±0.000 0.696±0.000 0.325±0.000 0.653±0.000 0.440±0.000 0.282±0.000
MVSC [11] 0.595±0.000 0.613±0.000 0.717±0.000 0.542±0.000 0.546±0.000 0.541±0.000 0.451±0.000
AMGL [10] 0.557±0.047 0.552±0.061 0.677±0.058 0.480±0.093 0.539±0.015 0.503±0.054 0.397±0.080
RMSC [47] 0.385±0.024 0.512±0.012 0.742±0.013 0.692±0.038 0.213±0.019 0.346±0.260 0.288±0.027

CSMSC [48] 0.474±0.037 0.648±0.011 0.563±0.031 0.290±0.034 0.730±0.037 0.415±0.039 0.356±0.040
SFMC [13] 0.642±0.000 0.595±0.000 0.748±0.000 0.586±0.000 0.677±0.000 0.628±0.000 0.461±0.000

t-SVD-MSC [26] 0.526±0.024 0.705±0.012 0.862±0.008 0.871±0.022 0.348±0.024 0.497±0.028 0.446±0.029
ETLMSC [25] 0.483±0.017 0.681±0.007 0.845±0.013 0.832±0.017 0.275±0.007 0.413±0.010 0.362±0.010
LTCSPC [9] 0.639±0.000 0.768±0.000 0.807±0.000 0.737±0.000 0.532±0.000 0.615±0.000 0.555±0.000

TBGL-C 0.757±0.000 0.735±0.000 0.848±0.000 0.574±0.000 0.672±0.000 0.619±0.000 0.538±0.000
TBGL 0.789±0.000 0.806±0.000 0.877±0.000 0.695±0.000 0.696±0.000 0.686±0.000 0.627±0.000

144-D CORR feature, 73-D EDH feature and 128-D
WT feature are adopted as 5 views.

9) Reuters [54] has 18,758 documents of 6 categories.
We adopt 21, 513-D English, 24, 892-D France, 34, 251-
D German, 15, 506-D Italian and 11, 547-D Spanish
as 5 views.

10) Noisy MNIST [55] has 70, 000 samples with 2 views,
where the first view is original data, and the second
view is constructed by random choosing within-class
images with white Gaussian noise. Due to some
baselines cannot deal with such a large-scale dataset,
we randomly select 50,000 samples in experiments.

Baselines: We compare TBGL with 15 competitors, i.e.,
single-view constrained Laplacian rank (s-CLR) [41], Co-
reg [8], SwMC [24], MVGL [23], MVSC [11], AMGL [10],
RMSC [47], CSMSC [48], LMVSC [12], ETLMSC [25], t-SVD-
MSC [26], LTCSPC [9] and SFMC [13]. For an unbiased com-
parison, for all baselines, we adjusted the hyper-parameters
according to the experimental settings reported in their paper
to obtain the hyper-parameters corresponding to the best
results on each dataset. Then, we independently repeat the
involved methods 20 times and show the averages with the
corresponding standard deviations.

Evaluation Metrics: The widely used 7 metrics are
applied to evaluate the clustering performance, i.e., 1) Ac-
curacy (ACC); 2) Normalized Mutual Information (NMI); 3)
Purity; 4) Precision (PRE); 5) Recall (REC); 6) F-score; and
7) Adjusted Rand Index (ARI). For all metrics, the higher
value indicates the better clustering performance. For more
detailed definitions about the metrics, please refer to [27].

5.2 Comparisons with State-of-the-art Methods

Tables 2, 3, 4 present the comparison in metrics of the above
methods on 7 datasets, where the best and second best results
in all methods are represented by bold value and underline
value, respectively. For CLR with single-view setting, s-CLR
(best) denotes the best results of CLR by employing features
in different views, and s-CLR-C denotes the results of s-CLR
on the concatenated view-features. TBGL-C is TBGL with the
using the entire graph. From Tables 2, 3, we discover that:

• The single-view clustering method s-CLR (best) is
inferior to multi-view clustering methods. This is
because the information embedded in different views
are complementary. And the multi-view methods well
use this important formation for boosting clustering
performance, while s-CLR does not.

• The multi-view clustering method Co-reg is overall
inferior to the other multi-view methods, since it
neglects the significant difference between different
views for clustering. This is also because its perfor-
mance heavily depend on the graphs, which are arti-
ficially defined. However, in real-world applications,
it is difficult to artificially select a suitable graph for
some complex data.

• The proposed TBGL and other tensorized methods,
i.e., ETLMSC, t-SVD-MSC, and LTCSPC are superior
to the other methods. Tensorized methods well exploit
the complementary information and the spatial struc-
ture information embedded in the graphs of different
views, while other methods do not.
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Fig. 4. The visualizations of anchor selection results of different methods on four toy datasets, where the points with same color represent a cluster;
the corresponding colored numbers in the first column represent the number of data points in the cluster; the red circles represent the selected
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TABLE 4
The clustering results and CPU time (sec.) on three large-scale datasets

Dataset NUS

Metric ACC NMI Purity PER REC F-score ARI Time

Co-reg 0.1194 0.1143 0.2144 0.1014 0.0623 0.0771 0.0360 3846.12
MVSC 0.1496 0.0752 0.1839 0.0865 0.1236 0.1017 0.0382 659.32

LMVSC 0.1140 0.0768 0.1708 0.1158 0.0680 0.0857 0.0161 25.15
t-SVD-MSC OM a OM OM OM OM OM OM OM

ETLMSC OM OM OM OM OM OM OM OM
SFMC 0.1689 0.0601 0.1904 0.0627 0.3595 0.1068 0.0124 181.72
TBGL 0.2741 0.2023 0.2807 0.1308 0.4935 0.1566 0.0699 552.35

Dataset Reuters

Metric ACC NMI Purity PER REC F-score ARI Time

Co-reg 0.5627 0.3261 0.5523 0.3751 0.4113 0.3954 0.2136 1219.59
MVSC 0.5958 0.3472 0.5741 0.4199 0.4832 0.4493 0.2858 581.32

LMVSC 0.5890 0.3346 0.6145 0.5364 0.3290 0.4151 0.2043 150.51
t-SVD-MSC OM OM OM OM OM OM OM OM

ETLMSC OM OM OM OM OM OM OM OM
SFMC 0.6023 0.3541 0.6042 0.4288 0.4917 0.4562 0.2967 494.68
TBGL 0.7954 0.6595 0.7954 0.6160 0.9138 0.7359 0.6452 697.43

Dataset Noisy MNIST

Metric ACC NMI Purity PER REC F-score ARI Time

Co-reg OM OM OM OM OM OM OM OM
MVSC 0.6795 0.7088 0.6795 0.5665 0.8006 0.4848 0.4010 1428.90

LMVSC 0.3885 0.3440 0.4344 0.3112 0.2998 0.3054 0.2263 151.14
t-SVD-MSC OM OM OM OM OM OM OM OM

ETLMSC OM OM OM OM OM OM OM OM
SFMC 0.6999 0.6811 0.7271 0.5035 0.7951 0.6166 0.5628 495.90
TBGL 0.7638 0.7477 0.7812 0.6186 0.8447 0.6925 0.6386 802.30

a “OM” means “out-of-memory error”

• The proposed TBGL is remarkably superior to SFMC
and other non-tensorized methods. For example,
on MSRC-v5 dataset, compared with SFMC, TBGL
gains significant improvements around 19.0%, 27.9%,
19.0%, 34.3%, 21.8%, 28.6%, and 33.7% in terms
of seven metrics, respectively. For MVC, an ideal
view-consensus graph should have both the low-
rank structure and K-connected components. To get
the best clustering performance, the view-similar
graphs among different views have not only high
similarity but also high-similar spatial geometric

structure. Our method explicitly takes into account
these important information by minimizing the tensor
Schatten p-norm, while SFMC does not. Moreover, in
TBGL, the rank of the learned view-consensus graph
approximates the target rank better than SFMC.

• Although TBGL is an anchor-based method, its per-
formances also superior to ETLMSC, t-SVD-MSC and
LTCSPC. This is mainly because TBGL simultaneously
takes both the intra-view and inter-view similarity
structures of the learned bipartite graphs into con-
sideration by minimization tensor Schatten p-norm
and ℓ1,2-norm penalty, thus the learned graph well
characterizes the cluster structure and discriminative
information. Moreover, when we use complete simi-
larity graphs, i.e., TBGL-C, it still gets relatively good
results. Thus, the proposed techniques still work for
the original full graph. In contrast, the clustering
results of TBGL with using bipartite graph is better.
These results indicate that bipartite graph helps to
characterize the complex mechanisms of multi-view
data and afford efficient clustering.

5.3 Experiments on Three Large-scale Datasets
For the large scale datasets, due to CPU limitations, some
methods, e.g., SwMC, MVGL, AMGL, ETLMSC, t-SVD-MSC
and LTCSPC, suffer from the out-of-memory issue. So we
herein compare the clustering performances of our method
with the partial competitors in Table 4. The number of
anchors is set to 37, 400, and 1,000 on Reuters, NUS-WIDE,
and Noisy MNIST dataset, respectively. As depicted in 4, we
can draw conclusion that

• Comparing with non-tensorized method, e.g., LMVSC
and SFMC, it is true that the proposed TBGL takes
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Fig. 5. The clustering performances of the proposed method with different anchor selection methods on four real-world datasets.
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Fig. 6. The clustering performances of our method with the varying value
of p on MSRC-v5 and Handwritten4 datasets.

TABLE 5
The clustering performances w./w.o. the ℓ1,2-norm constraint on six

datasets, where the best results are represented by bold value

Dataset Case ACC NMI Purity Dataset Case ACC NMI Purity

MSRC w.o. 0.995 0.989 0.995 HW w.o. 0.998 0.995 0.998
w. 1.000 1.000 1.000 w. 1.000 1.000 1.000

Mnist4 w.o. 0.929 0.839 0.929 Cal101 w.o. 0.785 0.776 0.873
w. 0.938 0.859 0.938 w. 0.789 0.806 0.877

NUS w.o. 0.257 0.186 0.259 Reuters w.o. 0.762 0.589 0.762
w. 0.274 0.202 0.281 w. 0.795 0.660 0.795

a little more time. However, at the same time, the
proposed TBGL achieves superior clustering results
comparing with the non-tensorized methods on three
challenging datasets;

• Though a tensorized method, the proposed method
can still tackle large-scale datasets within an accept-
able time frame. In contrast, t-SVD-MSC and ETLMSC
suffer from out-of-memory issue. This is because we
reduced the computational complexity required by
the tensorized methods from O(n3+ Vn2+Vn2 log (n))
to O(m2nt+Vnmd), where V, n, and m are the number
of views, samples, anchors, respectively. Due to
m ≪ n in practice, the proposed TBGL is more
effective and more efficient.
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Fig. 7. The visualizations of the learned consensus graph w./w.o. ℓ1,2-
norm penalty on MSRC dataset.

5.4 Ablation Studies

To evaluate the influence of different components in the
proposed method, we conduct the following ablation studies:

Effectiveness of VDA: To this end, as reported in Fig. 4,
we first compare the visualization results of different anchor
selection methods on four toy datasets, where each cluster
is represented by some points (see blue, green, and black
points); each method selects 80 anchor points (see red circles).
Compared with the anchor selection results of the random
sampling and K-Means, we can observe that the proposed
VDA always chooses proper anchors in terms of balanced
and unbalanced toy datasets, which clearly demonstrates
that the anchors selected via VDA can evenly cover the
entire point clouds. Though the K-means method also gets
good performances in some scenarios, it needs to calculate
Euclidean distances among the features of all sample pints
and anchors. When the dimension of the input data is high,
such anchor selection scheme will be very time-consuming.

Moreover, we compare the clustering performance of the
proposed method with different anchor selection scenarios
on MSRC-v5, Handwritten4, Mnist4, and Caltech101-20
datasets. The clustering results are given in Fig. 5. One
can observe that the clustering results under VDA scheme
consistently outperform the results under two other anchor
selection strategies. These results clearly verify that the
anchor selection results offered by VDA to the multi-view
clustering are more favorable and effective. This is because
VDA takes the correlation of samples into account when
choosing anchors, thus the selected anchors can fully cover
the data points against all clusters.

Influence of Tensor Schatten p-norm: Taking MSRC-v5
and Handwritten4 datasets as examples, we analyze the
impact of tensor Schatten p-norm for clustering. Specifically,
we change p from 0.1 to 1.0 with the interval of 0.1, then we
report the ACC, NMI and Purity. Note that, when p = 1.0,
tensor Schatten p-norm degenerates into tensor nuclear norm.
As shown in Fig. 6, we can observe that the results under
different p are distinguishing mostly, and when p = 0.9 and p
= 0.7, we obtain the best clustering results on MSRC-v5 and
Handwritten4 dataset, respectively. This demonstrates that p
has a significant influence on the clustering results. This is
because that p exploits the significant difference among the
singular values. Another reason is that the tensor Schatten
p-norm approximate the target rank well in learning the
view-consensus graph.

Influence of ℓ1,2-norm Regularization: In this section,
we investigate the effectiveness of the introduced ℓ1,2-norm
penalty. Table 5 lists the clustering results of the proposed
method w./w.o. the ℓ1,2 regularization. From Table 5, it can
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Fig. 8. The clustering performances of TBGL w./w.o. self-weighted scheme on four real-world datasets.

0.2
0.4
0.6
0.8
1
1.2

0.2
0.4
0.6
0.8
1
1.2

0

0.01

0.02

0.03

0.04

0.2
0.4
0.6
0.8
1
1.2

(a) The 1-st input view

0.2
0.4
0.6
0.8
1
1.2

0.2
0.4
0.6
0.8
1
1.2

0

0.01

0.02

0.03

0.04

0.2
0.4
0.6
0.8
1
1.2

(b) The 2-nd input view

0.2
0.4
0.6
0.8
1
1.2

0.2
0.4
0.6
0.8
1
1.2

0

0.01

0.02

0.03

0.04

0.2
0.4
0.6
0.8
1
1.2

(c) The 3-rd input view

0.2
0.4
0.6
0.8
1
1.2

0.2
0.4
0.6
0.8
1
1.2

0

0.01

0.02

0.03

0.04

0.2
0.4
0.6
0.8
1
1.2

(d) The learned graph

Fig. 9. The visualization of the learned bipartite graph via proposed method on synthetic dataset.
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Fig. 10. The performances of TBGL with varying the number of anchor
points on MSRC-v5 and Handwritten4 datasets.
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Fig. 11. The graphs visualizations on MSRC-v5 dataset.

be seen that the clustering performance is boosted via the
ℓ1,2 regularization, especially on large datasets. Moreover,
Fig. 7 shows the learned view consensus graph w./w.o.
the ℓ1,2 regularization. From Fig. 7, it can be seen that the
learned view consensus graph is sparser with the help of
the ℓ1,2-norm constraint. These results indicate that the ℓ1,2
regularization is helpful to better characterize the similarity
structure of intra-view, i.e., well encoding the cluster structure
and discriminative information.

5.5 Model Analysis

Effect of The Self-weighted Scheme: For the multi-view sce-
nario, each view usually has significant different contribution
for clustering. In this section, we first conduct controlled
experiment to evaluate the influence of the proposed self-
weighted scheme. As reported in Fig. 8 w.r.t. w./w.o. the
self-weighted scheme, the proposed method equipped with
self-weighted scheme always obtain the best clustering
results on four datasets in terms of all three evaluation
metrics. This is because the proposed method equipped
with self-weighted scheme can well take into consideration
the differences of the multiple views. This benefits from
the adaptive weight assignment. The proposed method in
absence of the self-weighted scheme generally fails, which
results in the quick drop of the performance of the view-
consensus graph learning.

Effect of The Number of Anchors: We empirically analyze
the effect of the number of anchors for clustering on MSRC-
v5 and Handwritten4 datasets. To this end, we turn the
proportion that anchors take in the entire data points from
0.1 to 1.0 with the interval of 0.1, then we show seven
metrics (ACC, NMI, Purity, PRE, REC, F-score and ARI)
in Fig. 10. It is obviously observed that TBGL has a large
fluctuation when varying the number of anchors. When the
proportion is set to 0.5, TBGL obtains the best performance
on MSRC-v5 dataset and Handwritten4 dataset. Moreover,
we find that the metrics curves w.r.t. anchors proportion are
not monotonously increasing. This indicates that it is not
necessary to use numerous anchors for clustering.

Graph Visualization: We present the input graphs and the
learned view-consensus graph of our method on MSRC-v5
dataset in Fig. 11, where (a) - (e) are input graphs correspond-
ing to five views, (f) is the view-consensus graph. It can be
seen that the connected components in the input graphs
of all five views are not clear. By employing our proposed
method, we can observe that the learned view-consensus
graph has exact 7 connected components. It indicates that
our method well characterizes the cluster structure. The
above experimental results once again demonstrate that our
proposed tensor Schatten p-norm regularization helps to
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ensure the rank of the learned view-consensus graph more
closer to the target rank.

Moreover, taking the synthetic data as an example, we
visualize the view-consensus graph learned by the proposed
method. Fig. 9 (a-c) present the input synthetic data of three
views, respectively, where each input view adds uniform
random noise. As reported in Fig. 9 (d), by leveraging
the proposed tensorized bipartite graph learning method,
the learned view-consensus graph has exactly 3 connected
components. This result indicates that TBGL can well explore
the cluster structure embedded in the noisy multi-view data
via the self-weighted scheme.

6 CONCLUSION

In this article, we propose a tensorized bipartite graph learning
method for MVC (TBGL). TBGL exploits similarity of the
inter-view via tensor Schatten p-norm minimization, which
well explores the complementary information embedded in
the different views. Meanwhile, we combine the ℓ1,2-norm
minimization regularization and connectivity constraint to
explore the similarity of inter-view, thus, the learned graph
not only well encodes discriminative information but also has
the exact connected components. We solve our objective by
an efficient algorithm. Extensive experiments on real-world
datasets indicate the effectiveness of TBGL.

APPENDIX A
PROOF OF THEOREM 2

Proof: According to Eq. (14), we have

tr(PT
NWPM ) =

1

2
(tr(PT

NWPM + tr(PT
MWTPN ))

=
1

2
tr

([
PN

PM

]T [ W
WT

] [
PN

PM

]) (33)

Then Eq. (14) is equivalent to

argmax
PN ,PM

1

2
tr

{[
PN

PM

]T [ W
WT

] [
PN

PM

]}
s.t. [PN PM ]

T
[PN PM ] = I

(34)

The optimal solution of Eq. (34) is

1

2

[
W

WT

] [
PN

PM

]
=

[
PN

PM

]
Λ (35)

where Λ is a diagonal matrix whose elements are composed

of the eigenvalues of 1
2

[
W

WT

]
.

By simple matrix algebra, we have{
1
2WPM = PNΛ
1
2WTPN = PMΛ

(36)

Then it is ready to see (
√
2
/
2W)T(

√
2
/
2W)PM = PM (

√
2Λ)2

(
√
2
/
2W)(

√
2
/
2W)TPN = PN (

√
2Λ)2

(37)

According to Eq. (37), PN and PM are composed of the
leading K left and right singular vectors of

√
2
/
2W. Denote

by U1 and V1 are the leading K left and right singular vectors
of W, respectively, We have PM =

√
2
2 V1, PN =

√
2
2 U1.

APPENDIX B
PROOF OF CONVERGENCE ANALYSIS

Lemma 2 (Proposition 6.2 of [56]). Suppose F : Rn1×n2 → R
is represented as F (X) = f ◦ σ(X), where X ∈ Rn1×n2

with SVD X = Udiag(σ1, . . . , σn)V
T, n = min(n1, n2),

and f is differentiable. The gradient of F (X) at X is

∂F (X)

∂X
= Udiag(θ)V T, (38)

where θ = ∂f(y)
∂y |y=σ(X).

Theorem 4. [Convergence Analysis of Algorithm 1] Let Pk =
{E(v)

k ,O(v)
k ,B(v)

k ,C(v)
k ,Y(v)

1,k,Y(v)
3,k,J k,Y2,k}, 1 ≤ k < ∞ be

a sequence generated by Algorithm 1, then

1) Pk is bounded;
2) Any accumulation point of Pk is a stationary KKT

point.

B.1 Proof of the 1st part
Proof: To minimize E(v) at step k+ 1, the optimal E(v)

k+1
should satisfy the first-order optimal condition of (19):

α

µk
∂∥E(v)

k+1∥1 + E(v)
k+1 − (B(v)

k − C(v)
k +

1

µk
Y(v)
1,k) = 0.

By using the sub-gradient

∂∥E(v)
:,i∥1 =


E(v)
:,i

∥E(v)
:,i∥1

, E(v)
:,i ̸= 0

{E(v)
:,i |∥ E(v)

:,i ∥1≤ 1}, E(v)
:,i = 0

,

and from the update rule

Y(v)
1,k+1 := Y(v)

1,k + µk(B
(v)
k − C(v)

k − E(v)
k )

=⇒ α∂∥E(v)
k+1∥1 − Y(v)

1,k+1 = 0,

So, ∥Y(v)
1,k+1∥1 ≤ N and Y(v)

1,k+1 is bounded.
To minimize O(v) at step k + 1, the optimal O(v)

k+1 should
satisfy the first-order optimal condition of (20):

γ

τk
∂∥O(v)

k+1∥
2
1,2 + (O(v)

k+1 − C(v)
k − 1

τk
Y(v)
3,k) = 0.

By using the sub-gradient

∂
∥∥∥O(v)

k+1(i, :)
∥∥∥2
1
= {2

∥∥∥O(v)
k+1(i, :)

∥∥∥
1
h|

∥h∥∞ ≤ 1, hO
(v)
i,:

T
=
∥∥∥O(v)

i,:

∥∥∥
1
}.

(39)

and from the update rule

Y(v)
3,k+1 := Y(v)

3,k + τk(C
(v)
k − E(v)

k )

=⇒ γ∂∥O(v)
k+1∥2,1 − Y(v)

3,k+1 = 0,

So, ∥Y(v)
3,k+1∥∞ ≤ N and Y(v)

3,k+1 is bounded.
To minimize J at step k + 1 in (21), the optimal Jk+1

needs to satisfy

∇J ∥J k+1∥pSp⃝ + ρk(J k+1 − Ck+1 −
1

ρk
Y2,k) = 0.

Recall that when 0 < p < 1, in order to overcome the
singularity of (|η|p)′ = pη/|η|2−p near η = 0, we consider
for 0 < ϵ ≪ 1 the approximation

∂|η|p ≈ pη

max{ϵ2−p, |η|2−p}
.
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Letting J (i)
= U (i)

diag
(
σj(J

(i)
)
)
V(i)H

, then it follows
from Lemma 2 that

∂∥J (i)∥pSp⃝

∂J (i)
= U (i)

diag

(
pσj(J

(i)
)

max{ϵ2−p, |σj(J
(i)
)|2−p}

)
V(i)H

.

And then one can obtain

pσj(J
(i)
)

max{ϵ2−p, |σj(J
(i)
)|2−p}

≤ p

ϵ1−p

=⇒

∥∥∥∥∥∥∂∥J
(i)∥pSp⃝

∂J (i)

∥∥∥∥∥∥
2

F

≤
N∑
i=1

p2

ϵ2(1−p)
.

So
∂∥J ∥p

Sp⃝
∂J is bounded.

Let us denote F̃V = 1√
V
FV , FV is the discrete Fourier

transform matrix of size V × V , FH
V denotes its conjugate

transpose. For J = J ×3 F̃V and using the chain rule in
matrix calculus, one can obtain that

∇J ∥J ∥pSp⃝ =
∂∥J ∥pSp⃝

∂J
×3 F̃

H
V

is bounded.
And it follows that

Y2,k+1 = Y2,k + ρk(Ck+1 −J k+1)

=⇒ ∇J ∥J k+1∥pSp⃝ = Y2,k+1,

Y2,k+1 appears to be bounded.
Moreover, by using the updating rule

Y(v)
1,k+1 := Y(v)

1,k + µk(B
(v)
k − C(v)

k − E(v)
k ),

Y(v)
3,k+1 := Y(v)

3,k + τk(C
(v)
k − O(v)

k ),

Y2,k = Y2,k−1 + ρk−1(Ck −J k),

we can deduce

L(E(v)
k ,O(v)

k ,B(v)
k ,C(v)

k ,Y(v)
1,k,Y(v)

3,k,J k, Y2,k;ρk;µk;τk) (40)

≤ L(E(v)
k ,O(v)

k ,B(v)
k ,C(v)

k ,Y(v)
1,k-1,Y(v)

3,k-1,J k, Y2,k-1;ρk-1;µk-1;τk-1)

+
µk + µk−1

2µ2
k−1

∥Y1,k −Y1,k-1∥2F +
∥Y1,k∥2F

2µk
− ∥Y1,k−1∥2F

2µk−1

+
ρk + ρk−1

2ρ2k−1

∥Y2,k −Y2,k−1∥2F +
∥Y2,k∥2F

2ρk
− ∥Y2,k−1∥2F

2ρk−1
.

+
τk + τk−1

2τ2k−1

∥Y3,k −Y3,k−1∥2F +
∥Y3,k∥2F

2τk
− ∥Y3,k−1∥2F

2τk−1
.

Thus, summing two sides of (40) from k = 1 to n, we have

L(E(v)
n ,O(v)

n ,B(v)
n ,C(v)

n ,Y(v)
1,n,Y(v)

3,n,J n,Y2,n; ρn;µn; τn)

≤L(E(v)
0 ,O(v)

0 ,B(v)
0 ,C(v)

0 ,Y(v)
1,0,Y(v)

3,0,J 0,Y2,0; ρ0;µ0; τ0)

+
∥Y1,n∥2

F

2µn
− ∥Y1,0∥2

F

2µ0
+

n∑
k=1

(
µk+µk-1

2µ2
k-1

∥Y1,k −Y1,k-1∥2
F)

+
∥Y2,n∥2

F

2ρn
− ∥Y2,0∥2

F

2ρ0
+

n∑
k=1

(
ρk+ρk-1

2ρ2
k-1

∥Y2,k −Y2,k-1∥2
F)

+
∥Y3,n∥2

F

2τn
−∥Y3,0∥2

F

2τ0
+

n∑
k=1

(
τk+τk-1

2τ 2
k-1

∥Y3,k −Y3,k-1∥2
F).

(41)

Observe that
∞∑
k=1

µk+µk-1

2µ2
k-1

< ∞,
∞∑
k=1

ρk+ρk-1

2ρ2
k-1

< ∞,
∞∑
k=1

τk+τk-1

2τ 2
k-1

< ∞,

we have the right-hand side of (41) is finite and
thus L

(
E(v)
n ,O(v)

n ,B(v)
n ,C(v)

n ,Y(v)
1,n,Y(v)

3,n,J n,Y2,n; ρn;µn; τn
)

is bounded. Notice

L
(

E(v)
n ,O(v)

n ,B(v)
n ,C(v)

n ,Y(v)
1,n,Y(v)

3,n,J n,Y2,n; ρn;µn; τn
)

=
V∑

v=1

βtr(PTLCn+1
P) +

V∑
v=1

µn

2
∥B(v)

n − C(v)
n − E(v)

n +
Y(v)
1,n

µn
∥2F

+
V∑

v=1

τn
2
∥C(v)

n − O(v)
n +

Y(v)
3,n

τn
∥2F

+ ∥J n+1∥pSp⃝ +
ρn
2
∥Cn+1 −J n+1 +

Yn

ρn
∥2F

+
V∑

v=1

α∥E(v)
n ∥1 +

V∑
v=1

γ∥O(v)
n ∥21,2, (42)

and each term of (42) is nonnegative. Following from the
boundedness of L(E(v)

n ,O(v)
n ,B(v)

n ,C(v)
n ,Y(v)

1,n,Y(v)
3,n,J n,Y2,n;

ρn; τn;µn) we can deduce each term of (42) is bounded. And
∥J n+1∥pSp⃝ being bounded implies that all singular values of
J n+1 are bounded and hence ∥J n+1∥2

F (the sum of squares
of singular values) is bounded. Similarly, the sequence
{E(v)

n ,O(v)
n } are also bounded since all norms of Rn are equiv-

alent. Considering the updating rule (Y2,k−Y2,k-1)/ρk-1 =
Ck−J k, it is ready to see Ck is bounded.

B.2 Proof of the 2nd part

Proof: From Weierstrass-Bolzano theorem, there exists
at least one accumulation point of the sequence Pk. We de-
note one of the points P ∗ = {E(v)∗,O(v)∗,B(v)∗,C(v)∗,Y(v)∗

1 ,Y(v)∗
3 ,

J ∗,Y∗
2}. Without loss of generality, we assume {Pk}+∞

k=1
converge to P ∗.

Note that from the updating rule for Y2, we have

Y2,k+1 = Y2,k + µk(Ck −J k) =⇒ J ∗ = C∗.

Similarly, by the updating rule of Y(v)
1 , we have

Y(v)
1,k+1= Y(v)

1,k + µk(B
(v)
k − C(v)

k − E(v)
k ) =⇒ B(v)∗ − C(v)∗ = E(v)∗;

by the updating rule of Y(v)
3 , we have

Y(v)
3,k+1= Y(v)

3,k + τk(C
(v)
k − O(v)

k ) =⇒ O(v)∗ − C(v)∗ = 0

In the J -subproblem, we have

∇J ∥J k+1∥pSp⃝ = Y2,k+1 =⇒ Y∗
2 = ∇J ∥J ∗∥pSp⃝.

Similarly, in the E(v)-subproblem, we have

Y(v)*
1 ∈ α∂∥E(v)∗∥1;

in the O(v)-subproblem, we have

Y(v)*
3 ∈ γ∂∥O(v)∗∥1,2.

Therefore, one can see that the sequences E(v)∗,O(v)∗,
B(v)∗,C(v)∗,Y(v)∗

1 ,Y(v)∗
3 ,J ∗,Y∗

2 satisfy the KKT conditions.
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