
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Adversarial Multiview Clustering Networks
With Adaptive Fusion

Qianqian Wang , Zhiqiang Tao , Wei Xia , Graduate Student Member, IEEE, Quanxue Gao ,

Xiaochun Cao , Senior Member, IEEE, and Licheng Jiao , Fellow, IEEE

Abstract— The existing deep multiview clustering (MVC)
methods are mainly based on autoencoder networks, which
seek common latent variables to reconstruct the original input
of each view individually. However, due to the view-specific
reconstruction loss, it is challenging to extract consistent latent
representations over multiple views for clustering. To address
this challenge, we propose adversarial MVC (AMvC) networks
in this article. The proposed AMvC generates each view’s samples
conditioning on the fused latent representations among different
views to encourage a more consistent clustering structure. Specif-
ically, multiview encoders are used to extract latent descriptions
from all the views, and the corresponding generators are used to
generate the reconstructed samples. The discriminative networks
and the mean squared loss are jointly utilized for training the
multiview encoders and generators to balance the distinctness
and consistency of each view’s latent representation. Moreover,
an adaptive fusion layer is developed to obtain a shared latent
representation, on which a clustering loss and the �1,2-norm con-
straint are further imposed to improve clustering performance
and distinguish the latent space. Experimental results on video,
image, and text datasets demonstrate that the effectiveness of our
AMvC is over several state-of-the-art deep MVC methods.

Index Terms— Adaptive fusion, adversarial training, multiview
clustering (MVC).

I. INTRODUCTION

CLUSTER analysis is a fundamental research problem
in machine learning, computer vision, and data mining,
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which aims to divide the data into multiple groups composed
of similar objects [1]. Due to the unsupervised nature, clus-
tering is free from manually labeling data, and thus, is widely
used in many practical applications, such as image segmen-
tation [2], image retrieval [3], video summarization [4], and
so on. Since multiview data that are characterized by different
features [5], [6] are ubiquitous in the real world, multiview
clustering (MVC) [7], [8] has emerged as a promising research
direction, aiming to discover the intrinsic cluster structures by
utilizing multiple views of a particular dataset.

Existing MVC methods can be roughly categorized into
traditional MVC [9]–[11] and deep MVC [12]–[14]. Nowa-
days, traditional MVC has been widely studied. For instance,
the multiview nonnegative matrix factorization method was
proposed for multiview image processing, which emphasizes
the structural inconsistency between different view’s represen-
tations with a new regularization term [15]. Nie et al. [16]
developed a multiview neighborhood learning method with
adaptive similarity matrix learning from raw data, which
achieves impressive clustering performance on multiview data.
Wang et al. [17] introduced position-aware proprietary items
to take full advantage of the complementary information
embedded in various view representations, based on which
a novel multiview subspace clustering model is designed.
The proposed model employs consistency constraints to make
these complementary representations have common features.
However, the traditional MVC methods extract the inherent
data structure with shallow and linear embedding functions
and, to some extent, cannot model the deeper characteristics
of complex data.

Recently, many research efforts have been made on
developing deep multiview neural networks for clustering.
For example, inspired by CCA and data reconstruction,
Wang et al. [18] integrated graph and discriminative learn-
ing into deep multiview subspace clustering and solved
the problems of jointly combining multiview features in
sparse subspace clustering. For unsupervised multimodal sub-
space learning, deep multimodal subspace clustering (DMSC)
networks [19] and multiview deep subspace clustering net-
work (MvDSCN) [20] were proposed based on convolutional
autoencoders and end-to-end multiview self-representation
learning, respectively. Zhao et al. [15] employed graph regu-
larized seminonnegative matrix factorization to study the deep
MVC algorithm. Nevertheless, the existing autoencoder-based
deep MVC methods have some limitations: 1) they only
use reconstruction loss to learn the consistency information
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Fig. 1. Illustration of AMvC network. AMvC consists of multiview encoder E , multiview generator G , multiview discriminator D, and an adaptive fusion
layer and an embedding clustering layer on the top of our encoder. Multiview encoder network E outputs a low-dimensional latent layer feature Zv for each
view. For each Zv , multiview generator network G generates reconstructed samples. A Discriminator network is used to distinguish generated sample or a
real one. Adaptive fusing layer fuses V latent representation Zv to a common representation Z. Clustering layer can improve clustering performance with
distribution consistent loss and �1,2-norm regularization.

between reconstructed samples and original ones, whereas
reconstruction loss is view-specific, and it is difficult to
extract consistent latent representations over multiple views
for clustering. 2) The shared representation might not be dis-
criminative enough for clustering. 3) Various fusion methods
are used in these methods, but they ignore that different views
usually differ in terms of importance.

To overcome these challenges, we develop a novel adver-
sarial MVC (AMvC) model to extract the internal structure
embedded in multiview data (see Fig. 1). Our model adopts
adversarial training [21] as a regularizer to guide the training
of encoders and generators based on reconstruction loss,
ensuring the consistent relationship between the reconstructed
samples and the original input. In addition, AMvC learns
an effective mapping by developing weight-shared multiview
encoder networks, which can map the raw data features
into a shared and low-dimensional embedding space. The
latent feature representation is extracted from each view, and
a multiview generator is used to generate each view from
the latent feature. Compared with traditional algorithms, the
proposed AMvC can reveal the nonlinear characteristics of
multiview data. Moreover, a learnable weighting mechanism
is designed to adaptively fuse each view to obtain the shared
latent representation, and we define the clustering loss with
the relative entropy between the distributions of the ideal label
and the predefined label, to constrain the shared latent repre-
sentation and improve the clustering results. We also perform
a �1,2-norm constraint on the shared latent representation to
make the extracted features more discriminative.

This article is an extended version of our previous
work [22]. Compared with [22], the substantial differences
are as follows: 1) we further design a new adaptive fusion
layer that can integrate the complementary view-specific
information for better representations. 2) We add a

discriminative feature learning loss to learn a more discrimi-
native embedding. 3) We provide more theoretical analyses,
model discussions, and experimental evaluations for better
effectiveness demonstration. The contributions of this work
are highlighted in three-folds.

1) We propose a novel AMvC network. It uses a multiview
encoder to extract latent descriptions from multiple
views and a multiview generator to generate sam-
ples of each view, which encourages the unique-
ness and sharing of the latent features extracted from
each view and effectively improves the clustering
performance.

2) The proposed model introduces an adaptive fusion that
adaptively learns a weight for the latent feature of each
view and then obtains the optimal shared representation.
It is beneficial to obtain a better feature representation
to improve the clustering performance.

3) We introduce �1,2-norm as a regularization term in
AMvC to select discriminative feature representation in
feature learning and increase the discriminative capabil-
ity of the shared representation.

We conduct several experiments on video, image, and text
datasets to demonstrate the superiority of AMvC to other MVC
methods.

II. RELATED WORK

A. Multiview Clustering

Traditional MVC algorithms can be divided into five cat-
egories. Some methods [15] build MVC based on matrix
factorization that uses nonnegative matrix factorization to seek
common latent factors. Some methods use the multikernel
learning [23] strategy to solve this problem. Since multiple
kernels naturally correspond to multiple views in multikernel
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learning, many MVC methods adopt multikernel learning by
using different kernels to process different views and data-fuse
them into a unified kernel in a linear or nonlinear manner for
clustering [24]. From the perspective of subspace learning,
subspace clustering is also a relatively common method to
solve this problem. The MVC methods based on subspace
learning generally assume that all input views are generated
from a latent subspace shared by multiple views. Since the
latent subspace has a lower dimension than that of all input
views, subspace learning can effectively reduce the dimension
of the feature. The obtained low-dimensional latent subspace
should also capture the most likely consistency shared by
all views [25]. Then, we can obtain the final clustering
results by conducting any clustering algorithm on this sub-
space. Canonical correlation analysis (CCA) [26] and kernel
CCA (KCCA) [27] have long been the main force of multi-
view feature learning and dimensionality reduction. They can
obtain the multiview data’s consistent representation by max-
imizing the correlation of the subspaces in the two views and
make the two view data similar to each other. The learned
consistent representation can be used for MVC and regression
with some extra design [28]. Recently, graph clustering attracts
considerable attention due to its simple implementation, con-
venient calling, and excellent performance, which is applied in
MVC and achieves good performance. Nie et al. [29] devel-
oped autoweighted multiple graph learning (AMGL) that can
learn the weight set of all graphs automatically without addi-
tional parameters.

B. Deep Multiview Clustering

Compared with traditional shallow models, deep neural
networks (DNNs) can learn a better feature representation [30],
[31]. Numerous deep multiview learning has attracted much
attention and is widely used in classification and cluster-
ing [32], [33]. A representative method for MVC is based
on CCA [34]–[36]. By maximizing the correlation of the
subspaces in two views, the CCA method makes the two
view data similar to each other to learn a consistent rep-
resentation. According to this idea, Andrew et al. [34] pro-
posed an extended version of CCA (DCCA) by using DNN
to learn the complex nonlinear transformation of bimodal
data so that the resulting representation presents a high lin-
ear correlation. Inspired by CCA and reconstruction-based
goals, Wang et al. [37] developed deep canonically correlated
autoencoders (DCCAEs). Unlike DCCA, DCCAE not only
makes the resulting representation highly linearly related
but also ensures the reliability of the learned representation
through reconstruction. However, all of the above-mentioned
methods can only be applied to two view data. To solve
this challenge, Benton et al. [35] proposed deep generalized
CCA (DGCCA), which is a nonlinear transformation used
to learn arbitrary multiview data forms method so that the
resulting representations have the most similar information to
each other.

In addition, scholars have also proposed a variety of other
multiview embedding clustering methods [38], [39]. For exam-
ple, Abavisani and Patel [19] applied convolutional neural

networks to unsupervised DMSC. Although this method has
shown encouraging results, it is challenging to perform the
DMSC algorithm on large-scale datasets due to self-expression
constraints. For another example, Xie et al. [36] proposed a
novel joint deep MVC (DMJC) framework that is able to
learn multiple deep embedding features simultaneously. DMJC
studies different fusion mechanisms and cluster allocation
goals. In addition, Huang et al. [40] first explored the appli-
cation of spectral clustering in deep multiview learning. The
proposed method considers both the local invariant informa-
tion within every single view and the consistent information
shared by all views. In addition, it stacked multiple orthogonal
constraint layers on the embedded network. Sun et al. [41]
integrated self-supervised learning and spectral clustering into
a deep MVC framework, which leverages the clustering
results and leverages classification and spectrum clustering
loss to supervise the latent representation learning and the
common latent subspace learning of multiple views, respec-
tively. Wang et al. [42], [43] designed a GAN-based model
for partial MVC, which employs the GAN model to recover
the missing multiview data. Although deep MVC algorithms
have developed rapidly, it is still under exploration to learn
discriminative low-dimensional latent spaces among multiview
data through DNNs.

III. ADVERSARIAL MULTIVIEW CLUSTERING NETWORK

A. Motivation

Existing autoencoder-based deep MVC methods incorporate
the mean square error to learn the latent representation that can
retain the structural characteristic of each view. Relying on this
constraint makes the latent representation contain much view-
specific information, resulting in insufficient exploration of
shared descriptions among views and poor clustering results.
In response to this problem, the proposed AMvC network
is proposed. AMvC uses a multiview generator to generate
each view’s samples conditioning on the fused latent repre-
sentations among different views to encourage a consistent
clustering structure. Moreover, the discriminative networks
and reconstruction loss are used to balance the distinctness
and consistency of each view’s latent representation. Thus,
the extracted features of one view not only contain its unique
information but also contain the shared information by all the
views.

The existing fusion methods for deep MVC are various.
These methods treat all views equally in the fusion process.
However, different views may have different roles when fusing
to a shared representation. Thus, AMvC uses an adaptive
fusion layer to gradually learn the weights for each view’s
latent feature and then obtain the optimal shared represen-
tation. In addition, in order to increase the discriminative
capability of the shared representation, we introduce �1,2-norm
constraint to select discriminative feature representation in fea-
ture learning. The �1,2-norm regularization makes the shared
latent representation more distinguishable, as shown in Fig. 2,
where the features with �1,2-norm have less similar part with
others in different clusters.
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Fig. 2. Illustration of �1,2-norm discriminability. (a) Features that are learned
without �1,2-norm regularization. (b) Features that are learned with �1,2-norm
regularization.

B. Notations

Given a multiview dataset X = {X1, . . . , Xv , . . . , XV },
where V is the number of views, Xv = {x (v)

1 , x2
(v), . . . , x (v)

n } ∈
Rdv ×n denotes the n samples of dimension dv from the
vth view, we construct the AMvC networks with three sub-
modules: multiview encoder module E , multiview generative
adversarial module (contains generators G and discrimina-
tors D), and deep clustering module (contains weighted adap-
tive fusion layer and deep embedding clustering layer). For
multiview data, corresponding to each view, our model has V
encoders, one fusion layer, one clustering layer, V generators,
and V discriminators. Table I gives the description for main
network parts in detail, in which dv is the feature dimension of
vth view, dh is the dimension of output/input of view-specific
fully connected layer (FC layer) in encoder/generator network.
m is the dimension of output/input of shared fully connected
layer in the encoder/generator network. Fig. 1 shows AMvC
network for the V -view case.

C. Network Module

The detailed design of the proposed AmVC network is
introduced as follows.

1) Multiview Encoder Module: In our multiview encoder
network E = {E1, . . . , Ev , . . . , EV }, for each view, there are
M-layer independent fully connected networks and N-layer
fully connected networks with shared parameters. The inde-
pendent layers are used to handle the different feature dimen-
sions of each view. For vth view Xv , the encoder Ev aims
at learning a latent representation Zv = {z(v)

1 , z(v)
2 , . . . , z(v)

n }
(Zv ∈ Rm×n). Specifically, it maps the dv-dimensional input
data x (v)

i to a low-dimensional representation z(v)
i . This map-

ping could be represented as Zv = Ev(Xv ; θEv
), where Ev

represents the vth view’s encoding network whose parameters
are θEv

.
2) Multiview Generative Adversarial Module: This module

has multiview generator G = {G1, . . . , Gv , . . . , GV } and mul-
tiview discriminator D = {D1, . . . , Dv , . . . , DV }. Our multi-
view generator network has a symmetric architecture to our
multiview encoder E . It consists of N-layer fully connected
networks with the shared parameters and M-layer independent
fully connected networks for each view, which can generate
all visual reconstructed samples with the latent representations
corresponding to each view. Specifically, we suppose X̂v =

Gv(Zv ), where X̂v represents the vth view’s reconstructed
sample matrix.

The discriminator network consists of V fully connected
layer networks. Each discriminator Dv is composed of three
fully connected layers, and we should note that x (v)

i is a real
instance and x̂ (v)

i is a generated sample. Dv feeds discriminated
the result back to the generator Gv to update its parameters.
By this means, the discriminator works as a regularizer to
guide the training of our multiview encoder network E for
better robustness of embedding representations and effectively
solves the overfitting problem.

3) Deep Clustering Module: To obtain a shared latent repre-
sentation Z, we introduce a weighted adaptive fusing layer FU
in our model, which adaptively fuses V latent representation
Zv to a common representation Z = f ({Zv}V

v=1; β), where
f (·; β) represents the fusion function. In order to seek for
a clustering-friendly latent space, we develop a unique deep
embedding clustering layer CU in the network. The embedded
clustering layer contains the new clustering centroids after
each iteration. We use the shared representation Z and the
cluster centroids {μ j}k

j=1 to obtain the current data distribution
and target data distribution. Furthermore, we employ the
Kullback–Leibler (KL) divergence of the current data distribu-
tion and the target data distribution as the objective function to
iteratively update the shared representation Z and the cluster
centroids {μ j}k

j=1.

D. Overall Objective Function

The total loss function of AMvC includes four parts: the
autoencoder (AE) loss LAE, the GAN loss LGAN, the clustering
loss LCLU, and the �1,2-norm regularization L1,2. The overall
objective function is presented as follows:

min
E,G,β,μ

max
D

LAE + λ1LGAN + λ2LCLU + λ3L12 (1)

where λ1, λ2, and λ3 are used to balance the impact of LGAN,
LCLU, and L12. β denotes learning weight of adaptive fusion
layer. μ represents the cluster centroids to be updated.

1) Autoencoder Loss: We minimize the AE loss to optimize
our multiview encoders E . LAE is measured by the mean
square error between the generated samples and real samples
as

LAE =
V�

v=1

||Xv − X̂v ||2F. (2)

However, the mean square error may lead to blurred recon-
structed results and cannot model the data distribution of each
view. To alleviate this issue, we adopt adversarial training to
generate (recover) more realistic results and further enhance
the model generalization.

2) Generative Adversarial Network Loss: Our model has
a multiview generator G and a multiview discriminator D.
Generator G continuously learns the probability distribution of
real data in each view. Its goal is to convert the latent represen-
tations into reconstructed data of each view. The reconstructed
data are fake data. The discriminator D determines whether an
input is a real data. Suppose that the real data distribution of
vth view is x v ∼ P(Xv ), and the generated data distribution
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TABLE I

DESCRIPTION FOR MAIN NETWORK ARCHITECTURE

of vth view is x̂ v ∼ P(X̂v ). Therefore, the GAN loss in our
model can be described as

LGAN =
V�

v=1

(Exv ∼P(Xv )[log Dv (x v)]

+ Ex̂v ∼P(X̂v )[log(1 − Dv (x̂ v))]). (3)

Denoting the number of samples as N , E represents:
Ex∼P(X)[ f (x)] = (1/N)

�N
i=1 f (x i). During the training

process, the generator network and the discriminator network
play a min–max game until converged. To be specific, the
multiview generator together with the multiview encoder is
trained to generate fake data similar to real data of each view,
and meanwhile, we train the discriminators so that they can
distinguish the fake data of each view effectively. However,
GAN loss alone can only ensure that the same input is mapped
to some random permutation of samples from a target data
distribution, while it cannot guarantee the desired output at
an instance level which is not suitable for a clustering task.
In light of this, we incorporate GAN loss with the AE loss to
achieve high reliability of data reconstruction.

3) Distribution Consistent Loss: The AE loss and the GAN
loss enable our multiview generator to generate fake samples
that are more similar to real ones, which encourages our
embedding representations to contain original feature informa-
tion as much as possible. However, they cannot guarantee that
the encoded low-dimensional space has a good cluster struc-
ture. To seek a discriminative embedding, we encapsulate the
clustering loss measured by KL-divergence, i.e., distribution
consistent loss, in our AMvC network. Specifically, we learn
V latent representations Zv for the V views. Then, we can get
a common latent representation based on these V views with
an adaptive fusing layer, which is shown as follows:

Z = f
�{Zv}V

v=1; β
� =

V�
v=1

βvZv
� V�

v=1

βv (4)

where β = {β1, . . . , βV } are learnable parameters, and f (·; β)
represents the fusion function.

Given the initial cluster centroids {μ j}k
j=1, we refer to [44]

and measure the similarity between common latent repre-
sentation point zi and centroid μ j by using the student’s

t-distribution as a kernel

qi j = (1 + ||zi − μ j ||2/α)
− α+1

2

�
j � (1 + ||zi − μ j � ||2/α)− α+1

2

(5)

where α is freedom degree of the student’s t-distribution, qi j is
interpreted as the probability that the sample i is assigned to
the cluster j , which can be also named soft assignment. In the
experiments, we set α = 1. With the help of an auxiliary
target distribution pi , we iteratively refine the clusters by
learning from their high confidence assignments. During the
training process, we update model parameters by matching
the soft assignment to the target distribution pi j . Therefore,
our objective is defined as the KL divergence loss between
the auxiliary distribution pi j and the soft assignment qi j as
follows:

LCLU =
�

i

�
j

pi j log
pi j

qi j
. (6)

To calculate pi , we raise qi to its second power and
normalize it with the frequency per cluster as

pi j = q2
i j

�
f j�

j � q2
i j �

�
f j �

(7)

where f j = �
i qi j are soft cluster frequencies. By introducing

the squared qi j , pi j can enlarge the distance between points of
the same cluster and reduce the distance between the points
of different clusters, which helps obtain more discriminative
and sparser results.

4) �1,2-Norm Regularization: The common latent repre-
sentation feature Z may have a large amount of redundant
information, which results in that some samples are incor-
rectly clustered. To learn a more discriminative representation,
we utilize the �1,2-norm term to constrain the common latent
representation feature matrix. The loss function is given by

L12 = ||Z||1,2 =

�			
�
i

⎛
⎝�

j

|zi j |
⎞
⎠

2

(8)

where || · ||1,2 is the �1,2-norm. For a matrix Z, the �1,2 norm

is defined as �Z�1,2 = (
�M

j=1 (
�N

i=1 |zi j |)2
)(1/2). Therefore,
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the �1,2-norm first does �1-norm on the column, and then
smooths the �2-norm of the row. We choose �1,2-norm on
the common latent representation due to �1,2-norm is widely
known to learn robust and discriminative representation [45].
L12 selects a subset of features which are most correlated
with each class separately and obtains features that generally
perform better in many real-world datasets, including text,
image and bio-microarray data.

E. Optimization

We jointly optimize the parameters of multiview encoder E ,
multiview generator G, multiview discriminator D, adaptive
weights β, and the cluster centroids μ using the Adam
optimizer [46]. The gradients of the AE loss, the GAN loss,
and the L12 loss are easy to calculate; therefore, we focus on
the calculation of the clustering loss gradient. We compute
the gradients of LCLU with respect to common authentication
information of each cluster centroid μ j and each data point zi

as

∂L

∂zi
= α + 1

α

�
j

�
1 + ||zi − μ j ||2

α

�−1

(pi j − qi j)(zi − μ j )

(9)

∂L

∂μ j
= −α + 1

α

�
i

�
1 + ||zi − μ j ||2

α

�−1

(pi j − qi j)

× (zi − μ j). (10)

The gradients of zi w.r.t. the latent representation z(v)
i for

each vth view data and fusion parameter βv are computed by

∂zi

∂z(v)
i

= βv

� V�
v=1

βv (11)

∂zi

∂βv
=

z(v)
i

�V
v=1 βv − �V

v=1

�
βv z(v)

i

�
��V

v=1 βv

�2 . (12)

According to the above-mentioned formula, the gradients of
LCLU can be obtained with respect to the clustering center μ j ,
the multiview encoder E , and the fusion parameters βv . These
gradients then update the fully connected network and other
parameters in a standard backpropagation manner. In order
to discover cluster assignments, we stop our procedure when
the proportion of points that change the cluster assignment
between two consecutive iterations is less than tol% of points.

F. Training Procedure

It is generally difficult to ensure the convergence of training
multiple GAN models. Thus, we follow previous work [42],
[47] to treat GAN as a regularizer in our model and mainly
adopt the clustering loss/objective as the convergence criterion.
We pretrain the encoder and generator with the AE loss to
facilitate the following GAN training under the assistance of
an adaptive weight fusion layer to ensure the convergence of
GAN training for multiple views. The following is our training
procedure.

1) Pretraining multiview encoder E and multiview gen-
erator G by minimizing the AE loss. We take

Algorithm 1 AMvC Network
Input:

Multi-view data set {Xv}V
v=1, λ1, λ2, λ3.

Procedure:
learningrate : lr=0.0001,
optimi zer : Adam
epoch = 30.

1: Whlie pre-training not converged do:
2: Update E and G by minimize LAE .
3: End pre-training.
4: While training not converged do:
5: Update E , G and D by minimize LAE + LG AN .
6: End training
7: While training not converged do:
8: Update E , G, D, β and μ by minimize the total loss L.
9: End training

10: return E , G, D, β and μ.
Obtain Z according to E and β.
Use Z as the similarity matrix and then do spectral clus-
tering on it.
End Procedure.

{x1, x2, . . . , x V } as input for multiview encoder E and
get V latent layer feature {z1, z2, . . . , zV }. Then, we take
{z1, z2, . . . , zV } as the input of multiview generator G
and get V outputs. For any latent layer feature zv , it can
generate reconstruction samples of V views. We update
multiview encoder E and multiview generator G by
minimizing the AE loss. After these, we get common
representation Z, then we save the clustering centroids
{μ j}k

j=1 for the following training by performing the
k-means algorithm on Z.

2) Pretraining multiview encoder E , multiview generator
G, and multiview discriminator D by optimizing the
sum of the AE loss and GAN loss. As with the last
step, we get V outputs corresponding to V views by
multiview encoder E and multiview generator G. Then,
we send these generated samples and corresponding
real samples to the discriminative networks D, respec-
tively. After that, we iteratively update the multiview
encoder-generator network and the discriminative net-
works by optimizing the sum of the AE loss and GAN
loss.

3) Training multiview encoder E , adaptive fusion para-
meters β, multiview generator G, multiview discrimina-
tor D, and embedded clustering layer.

Our embedded clustering layer contains the new clustering
centroids after each iteration. In the beginning, we lever-
age the clustering centroids {μ j}k

j=1 from step 1 and the
common representation Z to calculate the clustering loss.
Then, we use the total loss function to train the entire
network. In each iteration, we update the clustering centroids
μ and the adaptive fusion parameters β. After the training
is completed, we use the obtained common representation to
perform spectral clustering [48] to obtain the final clustering
result.
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IV. EXPERIMENTS

A. Experimental Settings

1) Datasets: We evaluate the performance of AMvC on
five multiview datasets to demonstrate its superiority. A brief
introduction is given as follows.

a) Image dataset: The handwritten numerals (HW)
dataset [49] consists of ten-digit classes from 0 to 9, and
each digit class includes 200 data samples. In our experiment,
we construct a multiview dataset from the HW dataset by
extracting two types of features, i.e., 216 profile correlations,
and 76 Fourier coefficients of the character shapes.

b) Image and text dataset: BDGP [50] is a dataset of
two views, which consists of 2500 images about drosophila
embryos of five categories. Each image includes a visual
modality represented by a 1750-D visual vector and a textual
modality represented by a 79-D feature vector. We validate our
method and baselines on the entire BDGP dataset and evaluate
their performance on both types of features.

c) Video dataset: The Columbia consumer video (CCV)
dataset [51] contains 9317 YouTube videos with 20 diverse
semantic categories. In our experiment, we use the subset
(6773 videos) of CCV provided by [51], along with three
hand-crafted features: STIP feature with 5000-D bag-of-words
(BoWs) representation, SIFT feature extracted every two sec-
onds with 5000-D BoWs representation, and MFCC feature
with 4000-D BoWs representation.

d) Face dataset: The Notting-hill (NH) dataset [52] is a
video-based face database constructed from the movie “NH”
and includes 4660 face pictures of five main actors. In our
experiments, 110 pictures of each actor are randomly selected,
and LBP features, Gabor features, and intensity features are
extracted to construct a multiview dataset.

e) Large-scale dataset: Mixed National Institute of Stan-
dards and Technology database (MNIST) consists of hand-
written digit images with 28 × 28 pixels and is a widely
used benchmark dataset. In our experiment, we employ its
two-view version (70 000 samples) provided by [47], which
takes the original gray images as the first view and images only
highlighting the digit edge as the second view. Caltech UCSD
Birds-2011 (CUB) [53] includes a total of 11 788 bird images
of 200 species categories. There is an article from Wikipedia
for each species, and all species are organized according to
scientific classification (order, family, genus, and species). The
species name list is obtained from an online field guide.

Table II shows the statistics of these five multiview datasets.
Note that, we utilize both the training and testing samples in
each dataset for the unsupervised clustering.

2) Comparison Algorithms: We choose spectral cluster-
ing [48] and 11 state-of-the-art MVC algorithms as baselines.
1) Feature concatenation spectral clustering (ConSC) [54]
performs spectral clustering on the feature representation
obtained by concatenating the features of each view. 2) Robust
multiview spectral clustering (RMSC) [55] employs a low-rank
constraint to recover a latent transition probability matrix from
pairwise similarity matrices of each view. 3) AMGL [29]
constructs a graph from every single view, and for each graph,
it automatically learns an optimal weight without introducing

TABLE II

STATISTICS OF FIVE IMAGE MULTIMODAL IMAGE DATASETS. NOTE
THAT THE TRAINING AND TESTING IMAGES IN EACH DATASET

ARE JOINTLY UTILIZED FOR CLUSTERING

additive parameters. 4) MVC and semisupervised classification
with adaptive neighbors (MLAN) [16] simultaneously con-
ducts local manifold structure learning and clustering, and it
automatically allocates each view a weight. 5) MVSC [56]
first obtains the subspace representation of each view and
then conducts clustering on them simultaneously. It adopts
a common clustering structure so that the consistency among
various views is ensured. 6) Self-weighted MVC (SwMC) [57]
proposes a self-weighted fusion scheme to address MVC.
7) Consistent and specific multiview subspace clustering
(CSMSC) [52] can fit the real-world datasets better, which
leverages a shared consistent representation to formulate the
consistency and a set of specific representations to exploit
the complementary property of multiple views. 8) Deep CCA
(DCCA) [34] maps two-view data into a subspace with two
learned nonlinear transformations, such that the represen-
tations are highly linear. 9) Locality adaptive latent MVC
(LALMVC) [58] learns a latent representation, which is shared
by different views via linear transformation, and coefficient
matrix that well characterizes the latent representation neigh-
bor relationship by manifold learning. 10) Scalable multiview
subspace clustering (SMVSC) with unified anchors [59] com-
bines anchor learning and graph construction into a unified
optimization framework. 11) Deep multimodal subspace clus-
tering (DMSC) [19] achieves multimodal subspace clustering
based on CNN. 12) Deep AMvC network [22] uses GAN for
MVC.

3) Evaluation Metrics: We adopt six standard metrics for
clustering performance evaluation, i.e., accuracy (ACC) [60],
normalized mutual information (NMI) [60], purity [61],
F-score [62], precision [62], and recall [62], whose calculation
formulas are given as follows.

Given a database Ai , suppose that {ai} and {bi} are the
set of obtained labels the set of labels provided by the
corpus, respectively, and then ACC can be calculated with
the following formula:

ACC =
�n

i=1 δ(bi map(ai ))

n

where n is the sample number, δ(a, b) is the delta function
whose result is 1 if a = b and is 0, otherwise; map(bi) is the
permutation mapping function that maps each cluster label bi

to the equivalent label from the data corpus. We can use the
Kuhn–Munkres algorithm [63] to find the optimal mapping.
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TABLE III

EXPERIMENTAL RESULTS OF EACH METHOD BY ACC, NMI, AND PURITY METRICS ON THE
FOUR DATASETS. BEST RESULTS ARE HIGHLIGHTED IN BOLD

Denote the ground truth of the clusters as C and the label
output by the algorithm as C �, and we formulate NMI as

NMI(C, C �) = MI(C, C �)
max(H (C), H (C �))

where H (C) and H (C �) are the entropies of ci and c�
j .

MI(C, C �) is mutual information metric and the calculation
formula is defined as

MI(C, C �) =
�

ci ∈C,c�
j ∈C�

p
�
ci , c�

j

� · log2

p
�
ci , c�

j

�
p(ci) · p

�
c�

j

�

where p(ci) and p(c�
j) are the probabilities that arbitrarily

selected documents from the corpus belongs to the clusters ci

and c�
j , respectively, and p(ci , c�

j ) is the joint probability that
the arbitrarily selected document belongs to the clusters ci

and c�
j at the same time. It is obvious that NMI(C, C �) ranges

from 0 to 1, and NMI equals 1 when two sets of clusters are
identical and equals 0 when two sets are independent.

Purity can be calculated by

Purity = n1

n1 + n2

where n1 is the number of pairs that are classified together,
both in the “real” classification and in the classification
obtained by the algorithm. n2 is the number of pairs that are
classified together in the algorithm’s classification, but not in
the correct classification.

The definition of F-score is as

F-score = (1 + λ2) × Precision × Recall

λ2 × (Prcision + Recall)

where λ is used to balance the importance of precision
and recall, with Precision = (TP/(TP + FP)) and Recall =
(TP/(TP + FN)). In this article, λ = 1. True positive (TP)
means assigning two samples of the same object to the same
category, true negative (TN) means assigning samples of two
different objects to different categories, False positive (FP)
assigns samples of two different objects to the same category,

Fig. 3. Experimental results of each method by F-score, precision, and recall
metrics on the four datasets: (a) BDGP, (b) HW, (c) CCV, and (d) NH.

and false negative (FN) is assigning two samples of the same
object to different categories.

4) Implementation Details: We implemented our methods
and other nonlinear methods using the public library of
PyTorch for deep learning. All the experiments are con-
ducted on the platform running Ubuntu Linux 16.04 and
equipped with 64-GB DDR3 memory and NVIDIA Titan
Xp graphics processing units (GPUs). We train our model
utilizing the Adam [46] optimizer with default parameter
settings, and the learning rate was fixed as 0.0001. For each
training step, we conducted 30 epochs, and we test the other
linear methods one the same environment using MATLAB.
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Fig. 4. Visualization of original features for each view and the common latent representations given by different methods with t-SNE [64] on the HW
datasets, where (a) original data of first view, (b) original data of second view, (c) MLAN, (d) SwMC, (e) DMSC, and (f) AMvC.

Fig. 5. Visualization of original features for each view and the common latent representations given by different methods with t-SNE [64] on the BDGP
datasets, where (a) original data of first view, (b) original data of second view, (c) MLAN, (d) SwMC, (e) DMSC, and (f) AMvC.

Our source code has been uploaded to the Github website:
https://github.com/IMKBLE/AmVC.

Since DCCA is designed for two-view data, we first select
two views according to the performance in our model as
two branches for DCCA and obtain the embedding features
of them. Then, we conduct K-means on the concatenated
two-branch features.

B. Experimental Results

Table III and Figs. 3–5 show the clustering performance on
the first four datasets. Several important observations could be
made as follows.

1) Compared With the Traditional MVC Method: Tradi-
tional MVC algorithms mainly employ linear methods
to get the common representations shared by multiple
views, and thus, they cannot handle high-dimensional
and complex data due to its nonlinear nature. In light
of this, our approach fully exploits the discriminative
feature by introducing �1,2-norm regularization, and the

adaptive fusion strategy helps our method to further
capture the data distribution of each view. As shown
in Table III and Fig. 3, our method significantly out-
performs baseline methods with a clear improvement,
which demonstrates the superiority of our algorithm.
There, MLAN is not available and DMSC can only
process one view data on the CCV dataset due to the
limited memory.

2) Compared With Deep MVC Methods: DNNs have shown
superior performance on learning feature representations
for image/video data recently. However, for the cluster-
ing task, deep MVC methods are limited to grid data,
which are not straightforward to handle generic features.
For example, DMSC [19] is specifically designed for
image data and cannot be directly used with irregular
data features (e.g., textual features in BDGP). In our
experiment, we adopt zero padding to make DMSC
available on the BDGP, HW, and CCV datasets, which,
however, lowers its performance inevitably. Different
from deep MVC methods, our approach builds on the top
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TABLE IV

ABLATION STUDY OF AMVC ON THE FOUR DATASETS

of a fully connected network, and thus, achieves higher
flexibility and generalizability for MVC. In addition,
DCCA, DMSC, and DAMC all focus on consistent sub-
space learning. However, they ignore that the discrimina-
tive feature learning of common subspace is important to
MVC tasks. Therefore, the proposed AmVC introduces
�1,2-norm regularization to learn discriminative features
and improve the MVC performance.

3) Different Performances on Different Datasets: From
Table III, we can see that all methods on the CCV
dataset have poor clustering performances. Considering
the characteristics of these datasets, we find that CCV
is a video dataset with semantic categories, while other
datasets are image datasets. Therefore, the reason for
the above-mentioned phenomenon may be that video
samples are much more complex than image samples,
and the labels indicating data semantic category result
in the diversity in data of the same category. In addition,
video data contains too many irrelevant objects and
noise. Thus, it is difficult to extract useful features from
the CCV dataset.

4) Visualization Results: Figs. 4 and 5 show the visualiza-
tion clustering results on the BDGP and HW datasets.
Fig. 4(a) provides a t-distributed stochastic neighbor
embedding (t-SNE) [64] visualization for feature embed-
dings in terms of every single view, three competitive
compared methods, and our proposed AMvC on the HW
dataset. In detail, we apply t-SNE on the common-view
feature representations (e.g., the latent layer features
in AMvC) given by different methods, respectively.
As can be seen, our approach exhibits a clearer and more
compact cluster structure than all the other methods and
original data. A similar observation could be found on
the BDGP dataset, as shown in Fig. 5(b). This clearly
shows the nice cluster-structured property given by our
deep embedded clustering layer, as it explicitly guides
our feature learning process with a clustering purpose.

C. Ablation Study

The purpose of the ablation study in this section is to study
the influence of the AE loss LAE, the GAN loss LGAN, the
clustering loss LCLU, the weighted adaptive fusion layer FU ,
and the �1,2-norm loss L12 on the clustering performance.
We report experimental results on the BDGP, HW, CCV, and
NH datasets with different ablated models in Table IV.

Fig. 6. Illustration of �1,2-norm discriminability. (a) Feature without
L1,2-norm regularization. (b) Feature with L1,2-norm regularization.

On the one hand, M2 achieves significantly better results
than M1 in terms of ACC, NMI, and purity, by utilizing
the GAN loss. Specifically, there is a 13.76% improvement,
a 1.60% improvement, a 2.47% improvement, and a 0.72%
improvement in the BDGP dataset, HW dataset, CCV dataset,
and NH dataset by ACC, respectively. This clearly shows
the effectiveness of using discriminator networks for each
view, which could further capture the data distribution and
disentangle the latent space. On the other hand, M3 and
M4 consistently outperform M2, especially in the BDGP
dataset by ACC, which demonstrates the clustering loss is
useful to guide Z for a better clustering performance. The
discriminator network and the deep embedding clustering layer
empower the proposed method to handle the hard sample pairs.
Moreover, M4 outperforms M3 by leveraging the adaptive
fusion layer FU to enhance the complementary information
across different views further. Finally, our full model improves
M4 further by using a L12 loss, where the �1,2-norm can make
the extracted features more distinguishable. To sum up, the
ablation study demonstrates that our proposed discriminative
networks, the adaptive fusion layer, and the �1,2-norm are
effective for the MVC task.

D. Discussion of the �1,2-Norm

We randomly select 22 samples and seven dimensional
features from five clusters on the CUB dataset. Each class
is circled by a red box. Fig. 6 shows the feature extraction
results without/with �1,2-norm regularization. From Fig. 6(a),
according to the feature without �1,2-norm regularization, sam-
ples of clusters 1–3 are similar with each other, and samples
of cluster 4 are similar with those of cluster 5. However, from
Fig. 6(b), the feature with �1,2-norm regularization, and sam-
ples from different clusters have fewer similar values in each
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Fig. 7. Impact of parameters on clustering performance on BDGP dataset. (a) ACC. (b) NMI. (c) Purity.

TABLE V

CLUSTERING PERFORMANCE OF AVAILABLE DEEP

MVC METHODS ON LARGE-SCALE DATASET

TABLE VI

INFLUENCE OF HYPERPARAMETER α ON BDGP DATASET

feature dimension, which means the discriminability of the
feature with �1,2-norm regularization is significantly increased.
Thus, through the constraint of �1,2-norm, the extracted feature
could improve the clustering performance.

E. Clustering on Large-Scale Dataset

To demonstrate our approach can be applied to the
large-scale dataset efficiently, we compare the proposed AMvC
with DCCA and DAMC, on the two-view MNIST dataset
provided by [47]. The MNIST dataset contains 70 000 sam-
ples. Traditional multiview methods might not be scalable
to large-scale datasets due to their optimization methods.
We cannot run these methods on MNIST because of the
out-of-memory issue or an extremely high time complexity.
DMSC adopts full-batch training since it develops a self-
expressive layer. Therefore, it is nontrivial to test DMSC on
MNIST due to the limited GPU memory. Differently, our
model is based on DNNs and is trained with a stochastic
mini-batch optimization strategy, making the proposed method
scalable to large-scale datasets. As shown in Table V, our
method consistently outperforms other methods with a clear
improvement, which validates the effectiveness of AMvC on
the large-scale dataset.

F. Parameter Analysis

1) Impact of α: The notion α is the freedom degree of the
student’s t-distribution. In this part, we discuss the impact of α

on clustering performance. We conduct the experiment on the
BDGP dataset. Table VI gives the clustering performance with
different α. As can be seen, the proposed method is robust to
a smaller α value.

2) Impact of λ: In our model, there are three regularization
parameters λ1, λ2, and λ3. According to our experience, we set
the parameter λ1 for the generative adversarial loss as 1. Then,
we vary the regularization parameters λ2 of the distribution
consistent loss and λ3 of the �1,2-norm regularization in the
range of {0.001, 0.01, 0.1, 1, 10, 100}. Since the strategies of
setting parameters are the same on all four datasets, we only
show the impact of parameters on the BDGP dataset for
simplicity. From the results in Fig. 7, we can see our method
can achieve the best ACC and NMI values on the BDGP
dataset when λ2 = 1, λ3 = 1; the proposed model AmVC
is stable since varying parameters has little influence on the
clustering performance.

G. Computational Complexity

We theoretically analyze the computational complexity. For
simplicity, we assume the outputs of all the layers have the
same dimension of p, and the original features of all views
are of the same dimension of d . Suppose V , L, and N are the
number of views, layers, and samples, respectively, and the
time complexity of the proposed model is O(V N Lpd).

V. CONCLUSION

In this article, we proposed a novel deep MVC model
named AMvC. By using the shared weights and the adaptive
fusion parameters, AMvC jointly embeds multiview data to a
common low-dimensional subspace with nonlinear mappings.
Upon the common subspace, we employ �1,2-norm regular-
izer to make the feature representations more discriminative.
Finally, the reported results demonstrate the superiority of
our proposed method when compared with other outstanding
methods. The work mainly focuses on MVC, and in the future,
we will further consider supervised scenarios, aiming at partial
multiview classification.
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