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Abstract— Multi-view spectral clustering has become appealing
due to its good performance in capturing the correlations among
all views. However, on one hand, many existing methods usually
require a quadratic or cubic complexity for graph construction
or eigenvalue decomposition of Laplacian matrix; on the other
hand, they are inefficient and unbearable burden to be applied
to large scale data sets, which can be easily obtained in the
era of big data. Moreover, the existing methods cannot encode
the complementary information between adjacency matrices, i.e.,
similarity graphs of views and the low-rank spatial structure
of adjacency matrix of each view. To address these limitations,
we develop a novel multi-view spectral clustering model. Our
model well encodes the complementary information by Schatten
p-norm regularization on the third tensor whose lateral slices are
composed of the adjacency matrices of the corresponding views.
To further improve the computational efficiency, we leverage
anchor graphs of views instead of full adjacency matrices of the
corresponding views, and then present a fast model that encodes
the complementary information embedded in anchor graphs of
views by Schatten p-norm regularization on the tensor bipartite
graph. Finally, an efficient alternating algorithm is derived to
optimize our model. The constructed sequence was proved to
converge to the stationary KKT point. Extensive experimental
results indicate that our method has good performance.

Index Terms— Multi-view clustering, graph fusion, large scale
data.

I. INTRODUCTION

MULTI-VIEW clustering has attracted more and more
attention in artificial intelligence and image recogni-

tion due to the facts that multi-view data are ubiquitous in
practical applications and help provide some complementary
information embedded in multi-views for improving clustering
performances [1]–[7]. It divides samples into several clusters
such that the samples in the same cluster have high similarity
to each other. During the last decade, many multi-view clus-
tering methods have been developed and achieved impressive
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clustering performance, among which spectral clustering (SC)
has attracted more and more attention.

SC has been widely used for clustering due to the fact that
adjacency matrix may well encode the relationship between
data points with arbitrary shape and spectral theory [8]–[12].
The key step of SC is to compute eigenvectors of the graph
Laplacian matrix which is obtained by affinity matrix. For
multi-view data, Kumar and Rai presented a well-known co-
regularized spectral clustering [13]. It learns indicator matrices
of views by leveraging SC on the corresponding views and
then obtains the common indicator matrix by minimizing the
divergence between them. To well encode the cluster struc-
ture and improve stableness of spectral clustering algorithm,
Cai et al. [14] added non-negative relaxation on indicator
matrix. However, both of them treat each indicator matrix
equally and ignore the salient difference between views which
is important for multi-view clustering. To take full advantage
of this information, an auto-weighted multiple graph learn-
ing (AMGL) model was presented [15]. It adaptively assigns
reasonable weights for Laplacian matrices of different views.

It is well known that adjacency matrix, which encodes rela-
tionship between data, is fixed in the aforementioned methods.
Thus, the quality of adjacency matrix has a large impact on
the algorithm. When the input graphs are of poor quality,
their clustering performance degrades remarkably. However,
in practical applications, it is still an open problem to design
a suitable graph for each view manually due to the unknown
and complex distribution of data. To improve the flexibility
of algorithm, Nie et al. [16] proposed a Laplacian rank con-
strained graph model, which is called self-weighted multiview
clustering (SwMC), for spectral clustering. SwMC leverages
the weighted mean square error to minimize the divergence
between similarity graphes of different views.

Although the aforementioned multi-view spectral methods
have achieved impressive performance in most experiments,
they usually involve two time consuming steps. The first
step is to construct the affinity graph whose size is N × N ,
where N denotes the number of samples. It usually takes
O(V N2d) time, where V denotes the view number and d
is dimension of view. The second step is to compute the
eigenvalue decomposition, which takes O(N3). This makes
the aforementioned methods inefficient and inherently difficult
to be applied to large scale data, which are ubiquitous in the
era of big data [17]–[21]. To this end, Cai and Chen [22]
proposed a large scale spectral clustering approach for single-
view data. Although preliminary clustering performance is
good, they still have the following deficiency:

1) In their methods, the similarity graphs is predefined.
Thus, their performance relies heavily on predefined
similarity graphs, resulting in inferior results.
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Fig. 1. The flowchart of multi-view spectral clustering with bipartite graph
(When � = N , we construct full size graph, and when � = M, we construct
bipartite graph).

2) All of them need to use post-processing to get discrete
labels, which limits their performances.

3) They failed to encode the complementary information
between adjacency matrices of views and the low-rank
spatial structure of adjacency matrix of each view. How-
ever, these information help improve the performance of
multi-view clustering.

To solve the above limitations, considering the advantage
of tensor Schatten p-norm [23]–[27], we present an effective
multi-view spectral clustering model which encodes both the
complementary information in graphs of views and low-rank
spatial structure of each adjacency matrix. To be specific,
we take N × N adjacency matrices of views as input and
construct a 3-order tensor that is composed of adjacency
matrices, and then minimize the devergence between them
by using tensor singular value decomposition (t-SVD) based
tensor Schatten p-norm (Seen Fig. 1). To further improve the
computational efficiency of our proposed method, consider-
ing the advantage of bipartite graph [28], instead of directly
constructing the full N × N graph, for each view, we learn a
N × M(M � N) anchor graph which encodes the relation-
ship between N data points and M anchor points, and then
use tensor Schatten p-norm regularization on tensor bipartite,
which is composed of anchor graphs of views, to minimize
divergence and encode complementary information of views.
To avoid the selection of hyper-parameter and encode dis-
criminative information, we present free-parameter weighted
strategy, which well takes into account the salient difference
between views, to learn a common shared indicator matrix
that has K connected components. What’s more, we propose
an fast method to calculate eigenvalue decomposition of Lapla-
cian matrix. The contributions are summarized as follows:

• We reduce the divergence between anchor graphs, which
well preserve manifold structure of each view, via the
minimization of tensor Schatten p-norm, which helps
encode the complementary information in graphs and
low-rank spatial structure of each graph.

• Our model adaptively assigns the weighted parameters for
different views by joint taking advantage of the salient
difference between views and connected components.
This indicates that the learned common shared graph
directly characterizes the cluster structure of data. So,

our method does not need post-processing to obtains the
discrete labels of data.

• An efficient algorithm associated with augmented
Lagrange multiplier is developed to tackle the multi-view
clustering problem. Moreover, the proposed approach is
shown to be tractable and closed-form solutions for all
sub-problems of minimizing different variables alterna-
tively are obtained. And we mathematically prove that
the proposed algorithm always converges to the KKT
stationary point.

• Our proposed algorithm reduces the main computational
complexity from O(N3 +V N2d) to O(M2 N +V N Md),
compared with our non-bipartite model. Thus, our pro-
posed tensor bipartite model is time-economical and can
be applied to large-scale multi-view clustering.

II. RELATED WORK

In recent years, a great deal of effort has been devoted to the
study of multi-view graph clustering. Graph-based Multi-view
Spectral Clustering has been more and more popular because
of the use of dimensionality reduction, so it is more suitable
for common high-dimensional data. Due to the advantages
of the graph-based methods, it is also widely used in related
fields as graph signal processing (GSP) [29]–[31] and graph
neural networks (GNN) [32], [33]. Graph-based clustering
methods usually find a compatible fusion graph of multiple
views, and then use other algorithms based on this fusion
graph to generate the desired final clusters. In order to learn
the good common fusion graph, Zhan et al. [34] presented
a graph learning model for multi-view clustering (MVGL).
MVGL learns a common shared graph by adaptively linear
combination of similarity graphs of different views with Lapla-
cian rank constraint. To well exploit local geometric structure,
Nie et al. [35] leveraged the idea of laplacian embedding to
learn a common shared graph and presented MLAN which
encodes the local intrinsic geometric structure of data. How-
ever, MLAN indicates that all views have the same local
intrinsic geometric structure. This constraint is unreasonable
in practical applications, resulting in suboptimal performance.

In order to solve large scale data, Li et al. [36] used a small
anchor graph instead of full graph to learn the real-valued
indicator matrix and presented an efficient spectral clustering
model which is called MVSC for clustering. Lin et al. [37] pro-
posed a multi-view attributed graph (MAGC) framework for
clustering. It exploits both node attributes and graph structure.
motivated by this, Kang et al. [38] first constructed anchor
graphes of views, which encode the similarity between nodes
and anchor points, and then learned a common shared bipartite
graph with the connectivity constraint. In Auto-Encoder (AE)-
based deep subspace clustering, Lv et al. [39] applied pairwise
similarity to weigh the reconstruction loss to capture local
structure information, while a similarity is learned by the self-
expression layer in deep neural networks.

Besides above, it is worth mentioning that, different from
the aforementioned clustering methods, Xie et al. [40], [41]
used self-representation coefficients of views to construct a
tensor and minimized the tensor nuclear norm based on t-SVD
to learn the view-consensus adjacency matrix for clustering.
It has been noted by many authors that high-dimensional
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data sets are more compressible when treated as tensors
and compressed via t-SVD [42]. Kilmer and Martin et al.
replaced the tensor rank function by its tensor nuclear norm via
t-SVD [43] so that the rank approximation becomes tractable.
But it is well known that the tensor nuclear norm regularization
may over-penalize the larger singular values (the larger ones
may carry undesirable information) when there is a large
gap between adjacent singular values (e.g., see [44]). So,
Gao et al. [23] introduced tensor Schatten p-norm and showed
that solving the tensor rank minimization problem by using
tensor Schatten p-norm can avoid over-penalizing the larger
singular values and will be more beneficial to exploit low-rank
structural information of tensor. So in this paper, the tensor
Schatten p-norm (to the power p) will be used as a better
rank approximation.

III. NOTATIONS

In this paper, we use bold calligraphy letters for third-
order tensors, e.g., A ∈ R

n1×n2×n3 , bold upper case letters
for matrices, e.g., A, bold lower case letters for vectors, e.g.,
a, and lower case letters such as ai jk for the entries of A.
The i -th frontal slice of A is A(i). A is the discrete Fast
Fourier Transform (FFT) of A along the third dimension,
i.e., A = fft(A, [], 3). Thus, A = ifft(A, [], 3). The trace
of matrix A is denoted by tr(A). I is an identity matrix. The

Frobenius norm of A is defined as �A�F =
��

i, j,k

��ai jk
��2.

Definition 1 (t-product [43]): Suppose X ∈ R
n1×m×n3 and

Y ∈ R
m×n2×n3 , then the t-product X ∗ Y ∈ R

n1×n2×n3 is
defined as

X ∗ Y = ifft(bdiag(XY ), [], 3),

where we use X =bdiag(X ) to denote the block diagonal
matrix whose blocks are frontal slices of X .

And by using the t-product, we have the following new
product decompositions of tensors (To save spaces, the def-
initions of orthogonal tensor, f-diagonal tensor and tensor
transpose are omitted (e.g., see [43])):

Definition 2 (t-SVD [43]): The tensor Singular Value
Decomposition (t-SVD) of A ∈ R

n1×n2×n3 is given by
A = U ∗ S ∗ VT, where U and V are orthogonal tensors of
size n1 × n1 × n3 and n2 × n2 × n3 respectively. S is an
f-diagonal tensor of size n1 × n2 × n3, and ∗ denotes the
t-product.

Definition 3: Given A ∈ R
n1×n2×n3 , h = min(n1, n2),

tensor Schatten p-norm of tensor A is defined as

�A� Sp� =
�

n3�
i=1

���A(i)
���p

Sp�

� 1
p

=
⎛⎝ n3�

i=1

h�
j=1

σ j

�
A(i)

�p

⎞⎠
1
p

(1)

where 0 ≤ p ≤ 1, σ j (A(i)
)denotes the j-th singular

value of A(i)
.

Remark 1: It is easy to see that, let p = 1, the
tensor Schatten p-norm of tensor A ∈ R

n1×n2×n3

becomes tensor nuclear norm [45]: �A�∗ =

TABLE I

TENSOR NOTATIONS

n3�
i=1

h�
j=1

σ j

�
A(i)

�
. For easy of representation, we leverage

matrix instead of tensor to explain the Schatten
p-norm. Given matrix A ∈ R

n1×n2 and its singular
values σ1, . . . , σh which are sorted in descending order. Then
for p > 0, we have �A�p

Sp� = σ
p

1 + · · · + σ
p

h . When p → 0,
we have lim p→0 �A�p

Sp� = #{i : σi 	= 0} = rank(A). Hence,
in literature, for 0 ≤ p ≤ 1, the Schatten p-norm (which is a
quasi-norm [46]) is introduced for the rank approximation.

The main concepts of our work is summarized in the Table I.

IV. THE PROPOSED METHOD

A. Problem Formulation and Objective

Given multi-view data X(1), X(2), · · · , X(V ), where X(v) ∈
R

dv×N denotes data matrix of the v-th view, dv and N denote
the feature dimension and number of samples in the v-th
view, respectively. Denote by L̃B(v) , B(v), D(v) the normalized
Laplacian matrix, similarity matrix and degree matrix of the

v-th view data, respectively, then L̃B(v) = I − D
− 1

2
(v) B(v)D

− 1
2

(v) ,
D(v) is a diagonal matrix whose i -th diagonal element is
D(v)(i, i) = �imax

j=1 B(v)(i, j), where imax is the number of
rows or columns of square matrix D(v). One of the most
representative multi-view spectral clustering methods, which
take into account salient difference between views, is

min
F,α(v)

V�
v=1

α(v)r
tr

�
FTL̃B(v) F

�

s.t. FTF = I,
V�

v=1

α(v) = 1, α(v) ≥ 0 (2)

where F is a N×K matrix, α(v) is the non-negative normalized
weight factor for the v-th view and r is a scalar to control the
distribution of different weights among different views.

Despite impressive performance, it still has the follow-
ing deficiency. First, hyper-parameter r affects the final
performance, this reduces the flexibility of model. In practical
applications, it is still an open problem to manually choose a
suitable value due to the large divergence between views and
complex structure of data. Second, it needs post-processing
such as K -means to learn discrete labels. This makes the per-
formance suboptimal. Performance of Eq. (2) heavily depends
on the predefined graphs B(v). As the aforementioned analy-
sis, it is impossible to construct a good graph manually
in real-world applications. Thus, it does not get clustering
performance from B(v)’s and usually leverages k-means to
obtain final clustering performance. Third, it doesn’t encode
both the complementary information in adjacency matrices
of views and low-rank spatial structure of each adjacency

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on May 27,2022 at 13:18:36 UTC from IEEE Xplore.  Restrictions apply. 



3594 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

matrix. Eq. (2) obtains the weighted Laplacian matrix by linear
combination of all graphs, which is element by element and
ignores the spatial structure and complementary information
between them. Thus, it is inefficient and inherently difficult to
be applied to large scale data.

To tackle the above deficiency, we present a new ten-
sorized spectral clustering model. Specifically, to remove
hyper-parameter r , we design a reasonable weighted strat-
egy to exploit the salient difference between views. Our
objective is

min
F,α(v)

V�
v=1

1

α(v)
tr

�
FTL̃B(v)F

�

s.t. FTF = I,
V�

v=1

α(v) = 1, α(v) ≥ 0 (3)

Eq. (3) requires to predefine a similarity graph for each
view and calculate eigen-vectors of the weighted Laplacian
matrix. Inspired by tensor nuclear norm, which well exploits
complementary information and spatial structure embedded in
tensor, we leverage tensor Schatten p-norm (See Definition 1)
to measure the similarity between B(v)’s. Thus, we have

min
F,α(v),B

�B�p
Sp� +

V�
v=1

1

α(v)
tr

�
FTL̃B(v)F

�

s.t. FTF = I,
V�

v=1

α(v) = 1, α(v) ≥ 0,

B(v)1 = 1, B(v) ≥ 0 (4)

where B(:, v, :) = B(v) denotes a N × N graph of tensor B,

the normalized Laplacian matrix L̃B(v) = I − D
− 1

2
(v) B(v)D

− 1
2

(v) is
a N × N matrix and D(v) is a N × N diagonal matrix, whose
diagonal entries are D(v)(i, i) = �imax

j=1 B(v)(i, j). F denotes
the N × K cluster indicator matrix, the optimal solution F are
composed of the eigenvectors corresponding to the smallest
eigenvalues of L̃B(v) .

Lemma 1: [47] The multiplicity K of zero eigenvalues

of L̃ = �V
v=1(

L̃B(v)

α(v) ) is equals to the number of connected
components in the graph associated with G.

In Eq. (4), B(v) usually has no exact K -connected com-
ponents, where K denotes cluster number. This results in
the need for post-process to get final labels. To handle this
problem, motivated by Lemma 1, we use the Laplacian rank
constraint to ensure that the common shared weighted graph
G has exact K -connected components. Thus, we adaptively
tune the hidden parameter β such that the weighted graph
G = (

�V
v=1

B(v)

α(v) )/(
�V

v=1
1

α(v) ) has exact K -connected com-
ponents. Thus, we have

min
F,α(v),B

�B�p
Sp� + β

V�
v=1

1

α(v)
tr

�
FTL̃B(v)F

�

s.t . FTF = I,
V�

v=1

α(v) = 1, α(v) ≥ 0,

B(v)1 = 1, B(v) ≥ 0 (5)

Fig. 2. Construction of tensor A schatten p-norm, A ∈ R
N×V ×�.

Note that, hidden parameter means that it cannot be tuned
manually in real applications. β can be adaptively updated as
follows. We first initialize β with a small value, and update
it according to the number of eigenvalue zero of L̃ after each
iteration. If this number is smaller than K , β is multiplied by 2;
or if it is greater than K + 1, β is divided by 2, otherwise we
terminate the iterations.

Remark 2: As shown in Fig. 2, when � = N , we construct
full size graph so tensor B = A ∈ R

N×V ×N . We use the com-
plete N × N adjacency matrix to characterizes the relationship
between the i -th data point and the j -th data point in the v-th
view. Then the tensor B’s m-th frontal slice �(m) represents
the relationship between the N data points and the m-th
data point in different views. Considering that different views
usually have different cluster structures, we add a tensor multi-
rank minimization constraint on the tensor Schatten-p norm to
ensure that each �(m) has a spatial low-rank structure. Thus
�(m) can better characterize the complementary information
embedded in different views.

B. Optimization

To optimize Eq. (5, we use Augmented Lagrange Multi-
plier (ALM) method [48] to iteratively solve the optimal solu-
tion. First, auxiliary variable J is introduced to replace tensor
B in our model and rewrite (5) as the following problem:

min
F,J ,B,α(v)

�J �p
Sp� + μ

2

����B − J − Q
μ

����2

F

+ β

V�
v=1

1

α(v)
tr

�
FTL̃B(v)F

�

s.t . FTF = I,
V�

v=1

α(v) = 1, α(v) ≥ 0,

B(v)1 = 1, B(v) ≥ 0 (6)

where tensor Q is Lagrange multiplier, μ is the penalty
parameter. To optimize the model (6), we have the following
four subproblems:

Solving F with fixed B(v), Q, α(v) and J . In this case,
the optimization w.r.t F in Eq. (6) becomes

arg min
FTF=I

V�
v=1

1

α(v)
tr

�
FTL̃B(v)F

�
(7)

We can solve (7) by using the eigenvalue decomposition,
where the optimal solution to variable F are the first K
eigenvectors corresponding to the first K largest eigenvalues
of matrix

L̃ =
V�

v=1

1

α(v)
L̃B(v) (8)
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Since L̃B(v) is normalized Laplacian matrix of the v-th view
and

�V
v=1 α(v) = 1, α(v) ≥ 0, the matrix L̃ is a real symmetric

matrix. Thus, we can obtain the optimal solution of matrix F
by directly performing eigenvalue decomposition on Laplacian
matrix L̃.

Solving J with fixed B(v), Q, F and α(v). Thus, the
model (6) becomes

arg min
J

�J �p
Sp� + μ

2

�����
B + Q

μ

�
− J

����2

F
(9)

We resort to the following Theorem 1 to solve Eq. (9) (e.g.,
see [23]).

Theorem 1: [23] Suppose Z ∈ R
n1×n2×n3 , let Z = U ∗

S ∗ VT. For the following model:

arg min
X

1

2
�X − Z�2

F + τ �X�p
Sp� (10)

the optimal solution X ∗ is

X ∗ = �τ ·n3 (Z) = U ∗ ifft
�

Pτ ·n3

�
Z

��
∗ VT (11)

where Pτ ·n3(Z̄) (with frontal slices Pτ ·n3(Z̄ (i)
)) is a f-diagonal

tensor, whose elements are found via using the general-
ized shrinkage-thresholding (GST) algorithm introduced in
Lemma 1 of [23].

Using Theorem 1, we easily get the optimal solution of the
model (9), i.e.,

J ∗ = � 1
μ

�
B + Q

μ

�
(12)

Solving B(v) with fixed J , Q, F and α(v). The optimiza-
tion w.r.t B(v) in Eq. (6) becomes

arg min
B(v)

μ

2

V�
v=1

����B(v) − J(v) − Q(v)

μ

����2

F

+β

V�
v=1

1

α(v)
tr

�
FTL̃B(v)F

�

s.t . FTF = I,
V�

v=1

α(v) = 1, α(v) ≥ 0,

B(v)1 = 1, B(v) ≥ 0 (13)

The first term in Eq. (13) can be rewritten as

μ

2

V�
v=1

����B(v) − J(v) − Q(v)

μ

����2

F
= Const

+μ

2

V�
v=1

�
tr

�
B(v)B(v)T

�
− 2tr

�
B(v)T

P(v)
��

(14)

where P(v) = J(v) − 1
μQ(v).

The second term in Eq. (13) can be rewritten as

tr
�

FTL̃B(v)F
�

= Const −
V�

v=1

tr
�

B(v)T
W(v)T

�
(15)

where W(v) = 1
α(v) D

− 1
2

(v) FFT D
− 1

2
(v) .

Substituting Eq. (14) and Eq. (15) into Eq. (13), we rewrite
Eq. (13) as the following optimization problem.

arg min
B(v)

μ

2

V�
v=1

�����B(v) − O(v)

μ

�����
2

F

s.t . B(v)1 = 1, B(v) ≥ 0 (16)

where O(v) = μJ(v) − (Q(v) − β(W(v))T )).
In Eq. (16), all B(v)(v = 1, · · · , V ) are independent. For

each B(v), the closed-form solution B(v)∗ is B(v)∗(i, :) =
(A(v)(i,:)

μ + γ 1)+ [49], where γ is the Lagrangian multiplier.
Solving α(v) with fixed other variables. By simple algebra,

the model (6) becomes

arg min
α(v)

V�
v=1

1

α(v)
tr

�
FTL̃B(v)F

�

s.t .
V�

v=1

α(v) = 1, α(v) ≥ 0 (17)

Let h(v) = tr(FT L̃B(v)F), the Eq. (17) becomes

arg min
α(v)

V�
v=1

h(v)

α(v)

s.t .
V�

v=1

α(v) = 1, α(v) ≥ 0 (18)

According to the method of Lagrange multipliers, with the
condition that

�V
v=1 α(v) = 1 and α(v) ≥ 0, the Eq. (18) can

be rewritten as

arg min
α(v),λ

V�
v=1

h(v)

α(v)
+ λ

�
V�

v=1

α(v) − 1

�
(19)

where λ is the Lagrange multiplier.
Take the derivative of each α(v) in Eq. (19), we can get

− h(v)

(α(v))2
+ λ = 0 (20)

where v = 1, 2, 3, · · · , V .
Combining Eq. (20) and expression

�V
v=1 α(v) = 1, we can

obtain a saddle point of the Lagrangian function and the
Lagrange multiplier λ is

λ =
��

v

�
h(v)

�2

(21)

Substituting λ into Eq. (20) with simple algebraic calcula-
tion, the optimal α(v) can be obtained by

α(v) =
√

h(v)

V�
v=1

√
h(v)

(22)

The whole algorithm is summarized in Algorithm 1.
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Algorithm 1 Algorithm to Solve (5)

V. FAST METHOD WITH BIPARTITE GRAPH

A. Motivation and Objective

The model (5) has a good performance, but it is time
consuming to directly solve the eigenvalue decomposition of
weighted Laplacian matrix in (5). The computational complex-
ity is O(N3). Moreover, it requires to predefine N × N graph
B(v)(v = 1, · · · , V ), this stage takes O(V N2d) time, where
d = �V

v=1 dv . Thus, it is inefficient and inherently difficult to
be applied to large scale data.

As the aforementioned analysis, the Eq. (3) in (5) requires to
predefine a similarity graph for each view and calculate eigen-
vectors of the weighted Laplacian matrix, so it is inefficient
and inherently difficult to be applied to large scale multi-view
data. To reduce the computational complexity, we construct
an effective bipartite graph C(v) ∈ R

N×M , which exploits the
relationship between N data points and M(M � N) anchors,
instead of N × N global graph B(v), inspired by [28]. This
remarkably reduces the main computational complexity from
O(V N2d) to O(V N Md). Thus, we have

min
F,α(v),C

�C�p
Sp� +

V�
v=1

1

α(v)
tr

�
FTL̃S(v)F

�

s.t . FTF = I,
V�

v=1

α(v) = 1, α(v) ≥ 0,

C(v)1 = 1, C(v) ≥ 0 (23)

where C(:, v, :) = C(v) denotes a N × M graph of tensor

C, L̃S(v) = I − D
− 1

2
(v) S(v)D

− 1
2

(v) is the normalized Laplacian

matrix of S(v) ∈ R
(N+M)×(N+M) with S(v) =

�
C(v)

C(v)T

�
.

D(v) is a diagonal matrix whose diagonal elements are
D(v)(i, i) = �N+M

j=1 S(v)(i, j).
In Eq. (23), S(v) is intrinsically comprised of double C(v),

the K -connected S(v) certainly guarantees the K -connected
C(v), so we can also tune the hidden parameter β to ensure

the weighted graph G = (
�V

v=1
C(v)

α(v) )/(
�V

v=1
1

α(v) ) has exact
K -connected components. Thus, our final objective is

min
F,α(v),C

�C�p
Sp� + β

V�
v=1

1

α(v)
tr

�
FTL̃S(v)F

�

s.t . FTF = I,
V�

v=1

α(v) = 1, α(v) ≥ 0,

C(v)1 = 1, C(v) ≥ 0 (24)

Both of the weighted graphs in Eq. (5) and Eq. (24) have
exact K -connected components, so the hidden parameter β
in Eq. (24) can be updated with the same method in Eq. (5).

Remark 3: According to the construction of tensor C,
we set � = M(M � N) so that tensor C = A ∈ R

N×V ×M ,
which is show in Fig. 2. Thus we have that, for tensor C,
adjacency matrix C(v) = A(v) ∈ R

N×M characterizes the
similarity between N sample points and M anchors in the
v-th view, if the i -th sample and m-th anchor belong to the
same cluster, then C(v)

m,i is high, otherwise C(v)
m,i is low or zero.

The m-th frontal slice �(m) of tensor C is a matrix whose
columns are composed of vectors C(v)

:,i (v = 1, 2, . . . , V ), C(v)
:,i

denotes the i -th column of indicator matrix C(v), which char-
acterizes the relationship between X(v) and the i -th cluster. The
purpose of multi-view clustering is that C(1)

:,i , C(2)
:,i , . . . , C(V )

:,i
are as similar practical applications, there are exactly equal.
Moreover, in practical applications, there has a large difference
between cluster structures of different views. Thus, the first
term in (24), i.e., tensor multi-rank minimization constraint
on C can make sure that �(m) has spatial low-rank structure.
It helps exploit the complementary information embedded in
inter-views and get the view-consensus indicator matrix.

B. Optimization

We can introduce an auxiliary variable J and rewrite (24)
as the following problem:

min
F,J ,C,α(v)

�J �p
Sp� + μ

2

����C − J − Q
μ

����2

F
+

β

V�
v=1

1

α(v)
tr

�
FTL̃S(v)F

�

s.t . FTF = I,
V�

v=1

α(v) = 1, α(v) ≥ 0,

C(v)1 = 1, C(v) ≥ 0 (25)

The optimization process of Eq. (25) contains the following
steps:

Solving F with fixed C(v), Q, α(v) and J . In this case,
the optimization w.r.t F in Eq. (25) becomes

arg min
FTF=I

tr
�

FTL̃F
�

(26)

where L̃ = �V
v=1

1
α(v) (I − D

− 1
2

(v) S(v)D
− 1

2
(v) ).

To directly optimize (26), the computational complexity is
O((N + M)2 K ). We herein provide an effective algorithm.
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By simple matrix algebra, we have

tr
�

FTL̃F
�

=
V�

v=1

1

α(v)
tr

�
FTF

�

−
V�

v=1

1

α(v)
tr

�
FTD

− 1
2

(v) S(v)D
− 1

2
(v) F

�
tr

�
FTL̃F

�
= Const

−
V�

v=1

1

α(v)
tr

�
FTD

− 1
2

(v) S(v)D
− 1

2
(v) F

�
(27)

Let us denote F = �
FT

N FT
M

�T
and D(v) = diag(D(v)

N , D(v)
M ),

where FN ∈ R
N×K is the first N rows of F and FM ∈

R
M×K is the remaining M rows of F, D(v)

N ∈ R
N×N and

D(v)
M ∈ R

M×M are diagonal matrices whose diagonal ele-
ments are D(v)

N (i, i) = �M
j=1 C(v)(i, j) and D(v)

M ( j, j) =�N
i=1 C(v)(i, j). Substituting the above identities and Eq. (27)

into Eq. (26), and by simple linear algebra, the optimal solu-
tion of Eq. (26) can be obtained by solving Eq. (28).

arg max
FT

N FN +FT
M FM=I

tr

⎛⎜⎝FT
N

V�
v=1

2C(v)D(v)
− 1

2

M

α(v)
FM

⎞⎟⎠ (28)

To solve the (28), we first introduce Theorem 2.
Theorem 2: Given E ∈ R

N×M , FN ∈ R
N×K , FM ∈ R

M×K .
The optimal solutions of

arg max
FT

N FN +FT
M FM =I

tr
�

FT
N EFM

�
(29)

are FN =
√

2
2 U1, FM =

√
2

2 V1, where U1 and V1 are the
leading K left and right singular vectors of E, respectively.

Proof: According to Eq. (29), we have

tr(FT
N EFM ) = 1

2
(tr(FT

N EFM ) + tr(FT
M ETFM ))

= 1

2
tr

��
FN
FM

�T �
E

ET

� �
FN
FM

��
(30)

Then, (29) is equivalent to

arg max
FN ,FM

1

2
tr

��
FN
FM

�T �
E

ET

� �
FN
FM

��
s.t. [FN FM ]T [FN FM ] = I (31)

The optimal solution of (31) can be solved by

1

2

�
E

ET

� �
FN
FM

�
=

�
FN
FM

�

 (32)

where 
 is a diagonal matrix and its elements are composed

of eigenvalues of 1
2

�
E

ET

�
.

Some simple block matrix multiplication yields⎧⎨⎩
1
2 EFM = FN 


1
2 ETFN = FM


(33)

Then it follows,⎧⎨⎩ (
√

2
2 E)

T
(
√

2
2 E)FM = FM (

√
2
)

2

(
√

2
2 E)(

√
2

2 E)
T

FN = FN (
√

2
)
2

(34)

According to (34), FN and FM are composed of the leading
K left and right singular vectors of

√
2

2 E. Let us use U1 and
V1 to denote the leading K left and right singular vectors of
E, respectively. Thus, we have FM =

√
2

2 V1, FN =
√

2
2 U1.

Denote by E = �V
v=1

C(v)D(v)
− 1

2
M

α(v) , and according to The-

orem 2, the optimal F∗ in Eq. (28) is F∗ =
√

2
2

�
UT

1 VT
1

�T
.

Here U1 and V1 can be obtained by performing SVD on E,
which takes the computational complexity O(V N M + M2 N).
So tackling Eq. (28) instead of directly solving Eq. (26) is
much more efficient because the number of anchors M � N
toward large-scale clustering.

Solving J with fixed C(v), Q, F and α(v). In this case,
J can be solved by

arg min
J

�J �p
Sp� + μ

2

�����
C + Q

μ

�
− J

����2

F
(35)

Same as the Eq. (9), we use Theorem 1 to obtain the optimal
solution of tensor J in Eq. (35):

J ∗ = � 1
μ

�
C + Q

μ

�
(36)

Solving C(v) with fixed J , Q, F and α(v). The optimiza-
tion w.r.t C(v) in Eq. (25) becomes

arg min
C(v)

μ

2

V�
v=1

����C(v) − J(v) − Q(v)

μ

����2

F

+β

V�
v=1

1

α(v)
tr

�
FTL̃S(v)F

�

s.t. FTF = I,
V�

v=1

α(v) = 1, α(v) ≥ 0,

C(v)1 = 1, C(v) ≥ 0 (37)

The first term in Eq. (37) can be rewritten as Eq. (14)
using C(v) instead of B(v), the second term in Eq. (37) can be
rewritten as

tr
�

FTL̃S(v)F
�

= Const − 2
V�

v=1

tr
�

C(v)T
H(v)T

�
(38)

where H(v) = 1
α(v) D

− 1
2

(v) FM FT
N D

− 1
2

(v) . By simple linear algebra,
Eq. (37) becomes

arg min
C(v)

μ

2

V�
v=1

�����C(v) − O(v)

μ

�����
2

F

s.t . C(v)1 = 1, C(v) ≥ 0 (39)

where O(v) = μJ(v) − (Q(v) − 2β(H(v))T)).
In Eq. (39), all C(v)(v = 1, · · · , V ) are also independent,

so we can solve C(v) using the same method as solving B(v)

in Eq. (16).
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Algorithm 2 Algorithm to Solve (24)

Solving α(v) with fixed other variables. In this case, the
optimization w.r.t α(v) in Eq. (25) becomes

arg min
α(v)

V�
v=1

1

α(v)
tr

�
FTL̃S(v)F

�

s.t .
V�

v=1

α(v) = 1, α(v) ≥ 0 (40)

Using the same method as in Eq. (17), let g(v) =�
tr(F(v)L̃S(v)F), the optimal α(v) is

α(v) =
�

g(v)

V�
v=1

�
g(v)

(41)

The whole algorithm is summarized in Algorithm 2.

C. Convergence Analysis

The convergence analysis of Algorithm 1 and 2 are quite
similar, for simplicity, we only conduct the convergence analy-
sis of Algorithm 2.

Lemma 2 (Proposition 6.2 of [50]): Suppose F :
R

n1×n2 → R is represented as F(X) = f ◦ σ(X),
where X ∈ R

n1×n2 with SVD X = Udiag(σ1, . . . , σn)V T,
n = min(n1, n2), and f is differentiable. The gradient of
F(X) at X is

∂ F(X)

∂ X
= Udiag(θ)V T, (42)

where θ = ∂ f (y)
∂y |y=σ(X).

Theorem 3: [Convergence Analysis of Algorithm 2] Let
Pk = {Ck,J k,Qk}, 1 ≤ k < ∞ in (25) be a sequence
generated by Algorithm 2, then

1) Pk is bounded;
2) Any accumulation point of Pk is a stationary KKT point

of (25).

1) Proof of the 1st Part: To minimize J at step k + 1 in
(25), the optimal Jk+1 needs to satisfy the first-order optimal

condition λ∇J �J k+1�p
Sp� + μk(J k+1 − Ck+1 − 1

μk
Qk) = 0.

Recall that when 0 < p < 1, in order to overcome the
singularity of (|η|p)� = pη/|η|2−p near η = 0, we consider
for 0 < � � 1 the approximation

∂|η|p ≈ pη

max{�2−p, |η|2−p} .

Letting J (i) = U (i)
diag

�
σ j (J (i)

)
�

V (i)H
, then it follows

from Defn. 1 and Lemma 2 that

∂�J (i)�p
Sp�

∂J (i)
= U (i)

diag

�
pσ j (J (i)

)

max{�2−p, |σ j (J (i)
)|2−p}

�
V(i)H

.

And then one can obtain

pσ j (J (i)
)

max{�2−p, |σ j (J (i)
)|2−p}

≤ p

�1−p

�⇒
����� ∂�J (i)�p

Sp�
∂J (i)

�����
2

F

≤ �N
i=1

p2

�2(1−p)
.

So
∂�J �p

Sp�
∂J is bounded.

Let us denote �FV = 1√
V

FV , FV is the discrete Fourier

transform matrix of size V × V , FH
V denotes its conjugate

transpose. For J = J ×3 �FV and using the chain rule in
matrix calculus, one can obtain that

∇J �J �p
Sp� = ∂�J �p

Sp�
∂J ×3 �FH

V

is bounded.
And it follows that

Qk+1 = Qk + μk(Ck+1 − J k+1)

�⇒ λ∇J �J k+1�p
Sp� = Qk+1,

thus Qk+1 appears to be bounded.
Moreover, by using the updating rule

Qk = Qk−1 + μk−1(Ck − J k),

we can deduce

Lμk (Ck+1,J k+1,Qk) ≤ Lμk (Ck,J k,Qk)

= Lμk−1 (Ck,J k; Qk−1)

+ μk + μk−1

2μ2
k−1

�Qk − Qk−1�2
F

+ �Qk�2
F

2μk
− �Qk−1�2

F

2μk−1
. (43)

Thus, summing two sides of (43) from k = 1 to n, we have

Lμn (Cn+1,J n+1,Qn)

≤ Lμ0 (C1,J 1,Q0)

+ �Qn�2
F

2μn
− �Q0�2

F

2μ0

+
n�

k=1

�
μk + μk−1

2μ2
k−1

�Qk − Qk−1�2
F

�
. (44)
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Observe that
∞�

k=1

μk + μk−1

2μ2
k−1

< ∞,

we have the right-hand side of (44) is finite and thus
Lμn (Cn+1,J n+1,Qn) is bounded. Notice

Lκn (Cn+1,J n+1,Qn) = β

V�
v=1

1

α(v)
tr

�
FT L̃S(v)F

�
+λ�J n+1�p

Sp� + μn

2
�Cn+1 − J n+1

+ Qn

μn
�2

F , (45)

and each term of (45) is nonnegative, following from the
boundedness of Lμn (Cn+1,J n+1,Qn), we can deduce each
term of (45) is bounded. And �J n+1�p

Sp� being bounded
implies that all singular values of J n+1 are bounded and hence
�J n+1�2

F (the sum of squares of singular values) is bounded.
Therefore, the sequence {J k} is bounded. Because

Qk+1 = Qk + μk(Ck − J k) �⇒ Ck = J k + Qk+1 − Qk

μk
,

and in light of the boundedness of J k,Qk , it is clear that Ck
is also bounded.

2) Proof of the 2nd Part: From Weierstrass-Bolzano the-
orem, there exists at least one accumulation point of the
sequence Pk . We denote one of the points P∗ = {C∗,J ∗,Q∗}.
Without loss of generality, we assume {Pk}+∞

k=1 converge to P∗.
Note that from the updating rule for Q, we have

Qk+1 = Qk + μk(Ck − J k) �⇒ J ∗ = C∗.

In the J -subproblem, we have

λ∇J �J k+1�p
Sp� = Qk+1 �⇒ Q∗ = λ∇J �J ∗�p

Sp�.

In the C(v)-subproblem, one has

2β∂ tr(C(v)
k+1H(v)T ) − α(v)μk(J

(v)
k+1 − C(v)

k+1 + Q(v)
k

μk
) = 0.

Now by the updating rule Q=Q+μ(C−J ), it is simple to
show that

α(v)Q(v)
k+1 = 2βH(v) �⇒ α(v)Q(v)∗ = 2βH(v),

Therefore, one can see that the sequences C∗,J ∗,Q∗ satisfy
the KKT conditions of the Lagrange function (25).

D. Complexity

There are two parts of our method that are time consum-
ing: (1) Construction of graphs {C(v)}V

v=1, same to [17], (2)
Optimization by iteratively solving Eq.(6). The first stage takes
O(V N Md +V N M log(M)) time, where d = �V

v=1 dv , V , M
and N are the number of views, anchors and samples, respec-
tively. The second stage mainly focuses on three variables
(C(v), J and F). For J ∈ R

N×M×V , solving J -subproblem
involves calculating the 3D FFT and 3D inverse FFT of an
N × V × M tensor and N SVDs of M × V matrices in
the Fourier domain, both of which are with the complexity

of O(2V N M log(V M)) and O(V 2 M N). So the complex-
ity in updating these variables iteratively are O(V N M(K +
1) + V N M log(M)), O(2V N M log(V M) + V 2 M N) and
O(V N M + M2 N), where K and t are the number of clus-
ters and iteration, respectively. Due to M � N , the main
complexity in this stage is O(M2 Nt + 2V N Mt log(V M)).
Therefore, the main computational complexity of our method
is actually O(M2 Nt + V N Md), which is linear to N . The
computational complexity of MVSC and our proposed method
are summarized in Table II.

VI. EXPERIMENTS

A. Evaluations on Synthetic Data

We have verified the effectiveness and superiority of our
method through experiments.

We added visualizations results of the learned graph on
synthetic noisy data in Fig. 3. Since features from different
views are embedded with different data features, different
clustering structures can be expressed by graphs constructed
from different views. Thus, three different bipartite graphs are
designed as the input of the single-view graphs, as shown in
Fig. 3(a-c), where Fig. 3(a) and Fig. 3(b) have two catty-corner
blocks showing different cluster distributions, Fig. 3(c) doesn’t
have any cluster structures because of the filled Gaussian
noise. All these single-view graphics are uniformly added
with random noise. The joint graph learned by our method
(see Fig. 3(d)) has accurate 3 connected components, and the
information in both Graph #1 and Graph #2 are absorbed into
the final clusters.

We can conclude that: both of the informative structure
within each view and the compatible structure between mul-
tiple views are explored by our model. Moreover, our model
adaptively assigns the weighted parameters for different views
by joint taking into account salient difference between views
and connected components. Thus, the result will not be
affected by the severely ill-views. In conclusion, our method
can well handle the data with high amounts of noise.

B. Evaluations on Real Datasets

1) Experimental Setup: In this subsection, we will introduce
datasets, comparisons and metrics adopted for evaluation.

2) Datasets: The following 5 multi-view datasets are
selected to investigate the dominance of our proposed method:

• MSRC-v5 [54] contains 7 varieties of objects with
210 images. Same to [17], we choose 24-dimension
(D) CM feature, 576-D HOG feature, 512-D GIST fea-
ture, 256-D LBP feature, 254-D CENT feature as 5 views.

• Handwritten4 [55] consists of 10 digits with 2,000 images
created from UCI machine learning repository. 76-D FOU
feature, 216-D FAC feature, 47-DZER feature and 6-D
MOR feature are employed as 4 views.

• Mnist4 [56] involves 4 handwritten digits, from digit 0 to
digit 3, with 4,000 images. We utilize 30-D ISO feature,
9-D LDA feature and 30-D NPE feature as 3 views.

• Caltech101-20 [57] is a subsets of Caltech101 datasets,
and comprises 20 categories with 2,386 images.
We employ 48-D GABOR feature, 40-D WM feature,
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TABLE II

COMPUTATIONAL COMPLEXITY ANALYSIS, WHERE V , M , N AND K ARE THE NUMBER OF VIEWS, ANCHORS, DATA POINTS
AND CLUSTERS, RESPECTIVELY. t IS THE ITERATION NUMBER. M � N , N/A MEANS NOT APPLICABLE

TABLE III

THE CLUSTERING RESULTS ON MSRC-V5 AND HANDWRITTEN4 DATASETS

254-D CENT feature, 1,984-D HOG feature, 512-D GIST
feature and 928-D LBP feature as 6 views.

• Reuters [58] includes 6 categories with 18,757 docu-
ments, which are described in five languages including
English, France, German, Italian and Spanish. We employ
21,531-D EN feature, 24,892-D FR feature, 24,892-D GR
feature, 15,506-D IT feature and 11,547-D SP feature as
5 views.

3) Comparisons and Metrics: We select 10 multi-view clus-
tering algorithms as our comparison methods including Co-
reg [13], SwMC [16], MVGL [34], MVSC [36], SMSC [51],
AMGL [15], MLAN [35], SFMC [17], RMSC [52],
CSMSC [53], and then evaluate performance by 7 indica-
tors, including (1) Accuracy (ACC); (2) Normalized Mutual
Information (NMI); (3) Purity; (4) Precision (PRE); (5) Recall
(REC); (6) Fscore and (7) Adjusted Rand Index (ARI). The
clustering performance is positively related to the value of
all metrics. For more detailed definitions about each of the
metrics, please refer to [41].

4) Comparisons With State-of-the-Art Methods: The clus-
tering results of our model and comparison methods on the
relevant datasets are shown in Tables III, IV. In order to
verify the superiority of our algorithm on large-scale datasets,
we test our algorithm on Reuters dataset, and the relevant
results obtained are shown in Table V. All the algorithms run
on a standard Windows 10 Server with an Intel (R) Xeon
(R) Gold 6230 CPU and 128 GB RAM. In Tables III, IV, V,

MSC-FG means the result of the proposed method with full
size graph, MSC-BG means the result of the proposed method
with bipartite graph. To ensure the accuracy of the experimen-
tal results, we repeat 20 times experiments for each compar-
ison algorithm independently and then calculate the averages
with corresponding standard deviations as the final results.
From Tables III, IV, V, we have the following interesting
observations:

• MSC-BG outperforms our chosen comparison algorithm
in the majority of cases, demonstrating its superior per-
formance in multi-view clustering.

• Our method without anchor selection (MSC-FG) is infe-
rior to our final method (MSC-BG) and MSC-FG can-
not handle large-scale datasets. The reason may be that
anchor selection can reduce memory consumption and
time consumption significantly.

• The performance of Co-reg is worse than that of the
other multi-view methods. One of the reasons probably
is that Co-reg neglects the significant difference among
different views for clustering, and another reason may be
that the performance heavily depends on the predefined
graphs manually. However, since the data in real-world
applications are very complex, it is difficult to select the
appropriate graph.

• Compared with MVSC, MSC-BG has better clustering
performance. For example, our method obtains improve-
ment around 18.7%, 28.8%, 22.5%, 37.6%, 18.4%,
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TABLE IV

THE CLUSTERING RESULTS ON MNIST4 AND CALTECH101-20 DATASETS

Fig. 3. Experiments on synthetic multi-view data.

29.8%, and 35.6% in terms of ACC, NMI, Purity, PER,
REC, F-score, and ARI on MSRC-v5 dataset. The reason
may be that our method makes good use of the com-
plementary information and spatial structure information
between different views, enabling better clustering of the
data.

TABLE V

THE CLUSTERING RESULTS ON REUTERS DATASET, “OM”
IS “OUT-OF-MEMORY”, RUNNING TIME(IN SECONDS)

• MSC-BG is more stable than MVSC. The reason may be
that our proposed method can directly obtain the cluster-
ing results based on the connected components without
any post-processing, while MVSC cannot. MVSC still
need to employ K-means to compute clustering labels.

• MSC-BG obtains the best clustering result with tak-
ing a little more time cost. Comparing with MSC-FG,
which cannot handle large-scale datasets, the proposed
fast method scales linearly with the data size. Thus, the
proposed method can well handle large-scale datasets and
is time-economical.

C. Further Evaluation

1) Effect of Parameter p: We analyzed the impact of p
in the tensor Schatten p-norm on the clustering results on
MSRC-v5, Handwritten4, Mnist4, Caltech101-20 and Reuters
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Fig. 4. ACC, NMI and purity scores as a function of p on MSRC-v5,
Handwritten4, Mnist4, Caltech101-20 and reuters datasets.

Fig. 5. The clustering results as a function of anchor rate on MSRC-v5,
Handwritten4, Mnist4 and Caltech101-20 datasets.

datasets. In particular, we take the value of p to increase
sequentially by 0.1 from 0.1 until p = 1, and give the
ACC, NMI and Purity for each value of p. Then the rela-
tionship between the parameter p and the clustering results is
plotted through all the experimental results, which is show

Fig. 6. Convergence experiment on MSRC-v5, Handwritten4, Mnist4 and
Caltech101-20 datasets.

Fig. 7. The graphs visualizations on MSRC-v5 dataset.

in Fig. 4. It can be found that the results under different
p are distinguishing mostly and when p = 0.6, p = 0.1,
p = 0.6, p = 0.9 and p = 0.8, we obtain the best clustering
results on MSRC-v5, Handwritten4, Mnist4, Caltech101-20
and Reuters dataset, respectively. This is probably mainly due
to the fact that tensor Schatten p-norm makes good use of the
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Fig. 8. The graphs visualizations on Handwritten4 dataset.

Fig. 9. The graphs visualizations on Mnist4 dataset.

complementary information and spatial structure embedded in
graphs of different views, enabling better clustering of the data.

2) Effect of the Anchor Rate: We analyzed the effect of
the anchor rate(the proportion of anchors to all samples) on
the clustering results on MSRC-v5, Handwritten4, Mnist4 and
Caltech101-20 datasets. Therefore, we take the value of anchor
rate to increase sequentially by 0.1 from 0.1 to 1, and give
results by conducting experiments with different anchor rates.

TABLE VI

THE RESULTS ON DIFFERENT SCALE REUTERS DATASET, “OM” IS “OUT-
OF-MEMORY”, RUNNING TIME(IN SECONDS)

The experimental results are shown in Fig. 5. It is easy to
find that there is huge difference in the clustering results with
different anchor rate. When the anchor rate is set to 0.5, MSC-
BG obtains the best performance on MSRC-v5, Handwritten4
and Mnist4 datasets. In addition to this we can also find
that the relationship curves in Fig. 5 are not monotonously
increasing, this shows that we do not need to set a larger
anchor rate to get better clustering results. In summary, we fix
the anchor rate at 0.5 uniformly for the experiments on selected
four datasets.

3) Convergence Experiment Analysis: We obtain our clus-
tering results by minimizing Eq. (24). Therefore, we calculated
the results of Eq. (24) for different iteration as a way to analyze
the convergence of the model. Taking MSRC-v5, Handwrit-
ten4, Mnist4 and Caltech101-20 datasets as example, we draw
the relationship between Eq. (24) value and Iteration in Fig. 6.
According to Fig.6, we can see that the proposed method
obtains relatively stable objective function value within a few
iterations. These experimental results show that MSC-BG can
converge quickly and satisfy our previous theoretical analysis.

4) Graph Visualization Analysis: To show the clustering
performance of MSC-BG more clearly, we draw the input
graphs and the learned view-consensus graph on MSRC-v5,
Handwritten4 and Mnist4 datasets in Fig 7, 8, 9, respectively.
The input graphs corresponding to all views on three datasets
are shown in Fig. 7(a-e), 8(a-d), 9(a-c), and Fig. 7(f), 8(e), 9(d)
are the view-consensus graph corresponding to MSRC-v5,
Handwritten4 and Mnist4 datasets, respectively. We can
observe the connected components in both the learned view-
consensus graph and the input graphs of all views, but the
connected components in the input graphs are much less clear
than them in the learned view-consensus graph. And there are
exact K -connected components in all learned view-consensus
graphs (K = 7, 10, 4 for MSRC-v5, Handwritten4 and Mnist4
datasets, respectively). It indicates that our method can use
the hidden information embedded between different views
to characterize the cluster structure. The results of the this
experiment demonstrate that MSC-BG helps to ensure the
learned view-consensus graph’s rank close to the target rank.

5) Dataset Scale Analysis: In order to show the effective-
ness of the base framework, we performed clustering using
MSC-FG on Reuters dataset of different size. In order to
show the effectiveness of the base framework, we performed
clustering using MSC-FG on Reuters dataset of different size.
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To be specifical, we divide the Reuters dataset, taking values
from 3,000 in order 1,000 up to 18,000 (Reuters has a total
of 18,757 data), and use MSC-FG in turn for clustering. The
clustering results on different scale Reuters dataset are shown
in Table VI. In Table VI, we can see that when the data
scale reaches 13,000, MSC-FG cannot handle this dataset, but
MSC-BG can handle 18,757 data, which is enough to see the
superiority of MSC-BG to handle large-scale datasets.

VII. CONCLUSION

We propose an effective multi-view spectral clustering
model. Our method uses the method of minimizing tensor
Schatten p-norm to learn the common graph, which well char-
acterizes the spatial structure and complementary information
embedded in views. We also propose an efficient algorithm to
solve the proposed model in an alternating way. Our method
learns a good graph which has K -connected components by
employing the connectivity constraint. Moreover, our method
learns the N × M(M � N) graph instead of the N × N graph,
where N and M are the number of data points and anchors,
so our method is time-economical. Extensive experimental
results indicate that our method has good performance on real-
world datasets.
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