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Abstract—Incomplete multiview clustering is a challenging
problem in the domain of unsupervised learning. However, the
existing incomplete multiview clustering methods only consider
the similarity structure of intraview while neglecting the simi-
larity structure of interview. Thus, they cannot take advantage
of both the complementary information and spatial structure
embedded in similarity matrices of different views. To this end,
we complete the incomplete graph with missing data referring
to tensor complete and present a novel and effective model to
handel the incomplete multiview clustering task. To be specific,
we consider the similarity of the interview graphs via the ten-
sor Schatten p-norm-based completion technique to make use
of both the complementary information and spatial structure.
Meanwhile, we employ the connectivity constraint for similarity
matrices of different views such that the connected components
approximately represent clusters. Thus, the learned entire graph
not only has the low-rank structure but also well characterizes the
relationship between unmissing data. Extensive experiments show
the promising performance of the proposed method comparing
with several incomplete multiview approaches in the clustering
tasks.

Index Terms—Incomplete data, multiview clustering, tensor
completion.

I. INTRODUCTION

MULTIVIEW data are ubiquitous in real scenarios, and
provide more useful complementary and discriminative

information embedded in multiple views, which help improve
the robustness of algorithms [1]–[7]. To date, numerous effec-
tive clustering methods have been developed and achieve
promising clustering performance. However, all clustering
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methods have an assumption that the entries of the given
data are fully observed from multiple views. This assump-
tion may not satisfy since some partial views are missing in
real applications, for example, disease diagnosing and Web-
page clustering. This makes the performance of the existing
multiview clustering approaches degenerate remarkably. Thus,
there has been a growing interest for incomplete multiview
learning [8]–[11].

The graph-based incomplete multiview clustering (GIMC)
has attracted much attention due to the fact that it can reveal
the relationships between data and complex distribution of
data [12]. One of the most representative methods is [8]. It
employs the incomplete graphs from partial complete views,
to learn the Laplacian matrix of the entire data including
missing views, and then learns low-dimensional embedding
by kernel CCA. However, it cannot well exploit the com-
plementary information and the low-rank structure embedded
in graphs of different views, which are very important for
multiview clustering [13], [14]. Another limitation is that it
requires at least one complete view. To this end, combined
with adaptive graph learning, Wen et al. [15] presented a new
incomplete multiview spectral clustering (SC) method (IMSC-
AGL). It makes use of the low-rank representation technique
to explore the low-rank structure embedded in each graph, that
is, constructed from the corresponding incomplete view.

Although IMSC-AGL obtains satisfactory results, it still has
the following shortcomings.

1) The learned graph cannot well exploit the cluster
structure of entire data including missing views. For
each view, IMSC-AGL only considers the relationship
between the un-missing data. Thus, the learned graph
cannot characterize the cluster structure.

2) It ignores the similarity structure of interview. IMSC-
AGL only considers the similarity structure of un-
missing data of intraview. Thus, the learned graph cannot
well explore the complementary information embedded
in multiple views.

3) It implicitly assumes that each view contributes equally
to the clustering task, which makes no sense in real
applications. Each view has some contents of the objects
that other views do not contain; thus, there has a signif-
icance difference between different views for clustering.
However, IMSC-AGL ignores this fact, resulting in
degrading the robustness and flexibility of the algorithm.

In this article, inspired from the low-rank structure of the
graph, we propose a novel and effective multiview clustering
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method for incomplete data, in which we complete the incom-
plete graph with missing data referring to the tensor complete
technique. Our method is the first work that employs the ten-
sor completion technique to learn the view-consensus graph.
Specifically, we employ the tensor Schatten p-norm [6], [16]
based complete technique to learn the consensus graph, which
helps to take advantage of both the spatial structure and
complementary information embedded in similarity matri-
ces of different views. This can guarantee that the learned
entire graph not only characterizes the similarity structure
of interview but also well characterizes the similarity struc-
ture of interview. After that, the connectivity constraint is
employed on the learned graph to ensure that the connected
components approximately indicate clusters, which also helps
guide the tensor completion. By alternate optimization, the two
processes are seamlessly connected to achieve better clustering
performance. To sum up, our contributions are three-fold.

1) We leverage a tensor Schatten p-norm-based complete
technique to construct the graph of entire data including
missing views. Thus, the learned graph not only char-
acterizes the similarity structure of interview but also
preserves the relationship between the un-missing data.

2) We employ the connectivity constraint for similar-
ity matrices of different views. Therefore, the con-
nected components approximately indicate clusters,
which helps to characterize the cluster structure of
multiview data.

3) The proposed method explicitly considers the difference
between different views by adaptive weighting scheme.
This helps encode the discriminant information embed-
ded in graph. Extensive experiments show the promising
performance of the proposed method comparing with
some state-of-the-art incomplete multiview approaches
in the clustering tasks.

Notations: The matrices and vectors are represented by bold
uppercase letters and bold lowercase letters, respectively. For
example, Z ∈ R

n1×n2×n3 , Z ∈ R
n1×n2 , and z ∈ R

n are the cor-
responding 3-order tensor, matrix, and n-dimensional vector,
respectively. Moreover, we use Z = fft(Z, [], 3) to repre-
sent the discrete Fast Fourier transform (FFT) of Z , and use
Z = ifft(Z, [], 3) to represent the inverse FFT of Z along the
3rd dimension. tr(Z) is the trace of matrix Z. I is an identity
matrix. 1 is a vector whose elements are 1.

II. RELATED WORK

Multiview clustering targets at dividing multiview data into
several different clusters, such that the samples in the same
cluster have high correlation to each other [14], [17]–[19].
In real word applications, only incomplete fractions of the
multiview data can be obtained [20], [21]. This makes the
performance of most methods degrade remarkably. Taking
this into consideration, there has been a growing interest for
incomplete multiview clustering, which can be roughly divided
three categories, that is: 1) matrix factorization-based meth-
ods (MFIMC); 2) kernel learning-based methods (KIMC); and
3) graph-based methods (GIMC). MFIMC aims to learn a
low-dimension common representation for different views by

the matrix factorization approach. Partial multiview clustering
(PMVC) [9] is one of the most representative MFIMC meth-
ods. For the different views of a sample, PMVC enforces them
to have the same representation and finally learns a consensus
latent subspace. Different from PMVC, Shao et al. [10] first
employed the data preprocessing technique to complete the
missing views, and then introduced the weighted non-negative
matrix factorization to simultaneously learn the view-specific
latent representations and the view-consensus representation.
However, the aforementioned methods neglect the local geo-
metric structure embedded in data when learning the consensus
representation of data. Thus, they cannot obtain the compact
representation, which well encodes discriminative information.
To tackle this problem, Wen et al. [22] presented a generalized
incomplete multiview learning method, which well exploits the
local geometrical structure.

KIMC integrates the kernel matrix imputation task and
clustering task into a unified optimization framework and alter-
natively solves each of them. For example, Liu et al. [23]
proposed late fusion incomplete multiview clustering (LF-
IMVC). LF-IMVC first learns a view-consensus clustering
matrix, and then imputes the incomplete information of them
with the learned consensus matrix. Although achieved good
clustering results, KIMC methods are sensitive to the quality
of the preconstructed kernels.

Different from MFIMC and KIMC methods, GIMC, which
can reveal the relationships between data and complex dis-
tribution of data, has become an active topic for incomplete
multiview learning. It aims to learn the latent feature from dif-
ferent graphs that exploit the relationships between samples.
The key challenge is how to effectively learn a reason-
able entire similarity graph by exploiting the information
implicit in incomplete multiview data. To solve this problem,
Trivedi et al. [8] proposed to use the Laplace matrix of the
complete view to fill in the incomplete the graph of the view
with missing samples. Zhao et al. [24] leveraged the idea
of PMVC to learn the latent consensus representation and
then learned the entire graph from the latent representation
for incomplete multiview clustering. However, all of them
require that few samples contain all views. This reduces the
flexibility of algorithms. For each view of multiview data,
Zhou et al. [25] proposed to construct a complete graph and
learned a view-consensus graph automatically by using each
constructed view-specific graph. Wang et al. [26] explored a
spectral perturbation theory and transferred the problem of
missing views from data level to a similar graph level, and
presented a matrix completion method for incomplete graphs.
However, they cannot exploit the low-rank structure embed-
ded in the graph, which is very important for clustering.
To this end, Wen et al. [15] proposed IMSC-AGL, which
simultaneously carries out graph construction and consen-
sus representation learning via low-rank constraint. However,
it ignores the similarity structure of interview, resulting in
inferior results.

Recently, deep learning-based IMC approaches
[21], [27]–[31] keep emerging. The basic idea of these
approaches is to leverage the remained information in the
complete views to predict the missing samples. For example,
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Wen et al. [27] developed a weighted fusion layer with the
view-indicator matrix to cope with the incomplete issue on
multiview clustering, where the filled missing views plays
no role in framework optimization. Lin et al. [29] integrated
view-consistency learning and view completing into a unified
framework and proposed incomplete multiview clustering
via contrastive prediction (COMPLETER). COMPLETER
aims to recover one view from another one by minimizing
the conditional entropy between view-specific representation.
Although these methods achieve impressive clustering results,
they fail to take both the spatial structure and complementary
information embedded in multiple views into consideration.

To sum up, our proposed method is significantly different
from existing incomplete multiview clustering methods in the
following aspects.

1) To the best of our knowledge, this could be the first
tensor completion-based incomplete multiview cluster-
ing method. Our proposed method takes the similarity of
the interview graphs into account via the tensor Schatten
p-norm-based complete technique to learn the consen-
sus graph. Thus, the learned entire graph not only well
characterizes the complementary information and spa-
tial structure embedded in multiview data, but also well
characterizes the relationship between the unmissing
data, whereas these existing incomplete multiview clus-
tering methods do not consider the similarity structure
of interview graphs.

2) Meanwhile, to well characterize cluster structure, we
employ the connectivity constraint for similarity matri-
ces. In contrast, existing methods fail to take this into
consideration.

3) Moreover, our method takes the differences among
multiple views into account, which helps encode the
discriminant information embedded in multiple graphs,
whereas most existing methods treat all views equally.

III. METHODOLOGY

A. Problem Formulation

Denote the multiview data by {X(v)}V
v=1, {Y(v)}V

v=1 is the
set of the corresponding unmissing instances, where X(v) ∈
R

dv×N; Y(v) ∈ R
mv×Nu ; dv and N are the number of dimen-

sions and data points in the vth view, respectively; V is the
view number, Nu and mv are the number of unmissing samples
and the feature dimensions of the vth view, respectively. The
objective function of incomplete multiview SC with adaptive
graph learning [15] is

min
D(v),E(v),F

V∑

v=1

(∥∥∥D(v)
∥∥∥∗ + λ2

∥∥∥E(v)
∥∥∥

1

)

V∑

v=1

(
λ1tr

(
F(v)TG(v)TL(v)G(v)F(v)

))
+ λ3

2
�
(

F(v),U
)

s.t. Y(v) = Y(v)D(v) + E(v),D(v)1 = 1

0 ≤ D(v), D(v)
i, i = 0, F(v)

(
F(v)

)T = I, UTU = I (1)

where D(v) ∈ R
Nu×Nu is the self-expression coefficient matrix

learned from the unmissing instances; D̄
(v) = G(v)T

D(v)G(v) is
the completed graph; the Laplacian matrix of D(v) is L(v), and
we have L̄

(v) = G(v)T
L(v)G(v); F(v) and U denote the cluster

indicator matrix of the vth view and a consensus cluster indica-
tor matrix, respectively. λi(i = 1, 2, 3) are penalty parameters.
�(·) is used to measure the disagreement of F(v) and the con-
sensus cluster indicator matrix U. G(v) ∈ R

Nu×N is an index
matrix used to complete the graph, which is defined as

G(v)
ij =

{
1, if y(v)

i = x(v)
j

0, otherwise
(2)

where y(v)
i ∈ R

mv is the ith unmissing instance in the vth view
and x(v)

j ∈ R
dv is the jth instance in the vth view.

Although IMSC-AGL achieves good clustering
performance, especially for the case in which all sam-
ples have missing views, it still has the following drawbacks.
First, in model (1), for each view, IMSC-AGL only considers
the relationship between the unmissing data by nuclear norm
minimization. Thus, the learned entire graph D̄

(v)
does not

characterize the similarity structure of interview graphs. For
multiview clustering, similarity graphs of different views
should have not only high similarity but also a similar spatial
structure. Unfortunately, IMSC-AGL does not take into
account this. In other words, it ignores the similarity structure
of interview graphs, which are very important for improving
clustering performance. Thus, the learned graph cannot make
full use of the complementary information embedded in
multiple views. Second, the connected components in the
learned graph does not approximately indicate the cluster.
Thus, the learned graph cannot exploit the cluster structure
of data. Third, from both the first term and last term in
model (1), it is easy to see that IMSC-AGL implicitly treats
each view equally, which makes no sense in real application.
For multiview data, the features of different view include
some content of the objects that other views do not contain;
thus, there has a big difference in clustering performance
between different views. However, IMSC-AGL ignores this
fact, resulting in degrading the robustness and flexibility. To
learn the entire graph, which well exploits the complementary
information embedded in different views and characterizes
the cluster structure, we employ a tensor complete technique
with the connectivity constraint to address the aforementioned
issues.

B. Objective Function

The multiview clustering aims to divide the data into K
clusters, an ideal similarity graph should have low-rank struc-
ture and K-connected components. Moreover, to obtain the
best clustering performance, similarity graphs between differ-
ent views not only have high similarity, but also the spatial
geometric structure between them is similar. For incomplete
clustering, we also hope that the learned graph well character-
izes the relationship between the unmissing data. Drawing the
inspiration from the tensor complete technique, the proposed
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Fig. 1. Construction of tensor Z ∈ R
N×V×N . Z(n)

r ∈ R
N×V denotes the

nth frontal slice of Z (n ∈ {1, 2, . . . , N}).

objective function is

min
Z(v)

‖Z‖p

Sp

s.t. C�(Z) = C�(S̄), 0 ≤ Z(v), Z(v) · 1 = 1 (3)

where Z ∈ R
N×V×N and Z(:, v,:) = Z(v),

S̄
(v) = G(v)TS(v)G(v), S(v) ∈ R

Nu×Nu is the similarity
matrix of the vth view, ‖ • ‖

Sp
is the tensor Schatten p-norm

(see Definition 1), � is the index of unmissing data in original
data, and C� denotes a completion operator which can be
defined as

C�(Z)i, j, k =
{Z i, j, k, (i, j, k) ∈ �

0, (i, j, k) /∈ �. (4)

Remark 1: The tensor Schatten p-norm in our objective (3)
is used to explore the complementary information embedded
in interview graphs Z(v). For tensor Z , as shown in Fig. 1, the
nth frontal slice Z(n)

r ∈ R
N×V describes the similarity between

N sample points in different views. The good graph Z(v) should
ensure that the relationship between N data points is consis-
tent in different views. Considering the fact that different views
usually show different cluster structures, we impose a tensor
Schatten p-norm minimization [16] based completion tech-
nique, that is, the tensor multirank minimization constraint
on Z , which can make sure each Z(n)

r has spatial low-rank
structure. After it happened, Z(n)

r can well characterize the
complementary information embedded in interview.

Definition 1 [16]: Given Z ∈ R
N×V×N, h = min(N, V),

tensor Schatten p-norm of Z is defined as

‖Z‖
Sp

=
(

N∑

i=1

∥∥∥Z (i)
∥∥∥

p

Sp

) 1
p

=
⎛

⎝
N∑

i=1

h∑

j=1

σj

(
Z (i)

)p

⎞

⎠

1
p

(5)

where p ∈ (0, 1] is a parameter of power and σj(Z(i)
) is the

jth singular value of Z (i)
.

Remark 2 Note that when p = 1, the tensor Schatten
p-norm of Zis the tensor nuclear norm [32]: ‖Z‖� =∑N

i = 1
∑h

j = 1 σj(Z (i)
). Let us use matrices to illustrate the

Schatten p-norm. Consider Zr ∈ R
N×V , σ1, . . . , σh is the sin-

gular values of Zr in the descending order. Then, for p > 0,
we may consider ‖Zr‖p

Sp = σ
p
1 +· · ·+σ p

h . If we let p → 0, one
can see limp→0 ‖Zr‖p

Sp = #{i : σi �= 0} = rank(Zr). Hence,
for 0 ≤ p ≤ 1, the Schatten p-norm (which is a quasinorm) is
introduced for the rank approximation.

From model (3), the learned Z(v) well characterize both
spatial low-rank structure and the relationship between the

unmissing data of the vth view. However, the learned Z(v)

does not satisfy the K-connected components. To achieve
the ideal similarity graph, the elements Zij in model (3)
should be constrained such that the completed graph has
approximately K-connected components which characterize
the cluster structure. Inspired by Lemma 1, we use constraint
rank(L(v)) = n − K instead of the connected constraint and
obtain

min
0≤Z(v), Z(v)·1=1

‖Z‖p

Sp

s.t. C�(Z) = C�
(S̄), rank(L(v)) = n − K. (6)

Lemma 1 [33]: The multiplicity K of the eigenvalue zero
of the Laplacian matrix LZ (non-negative) is equal to the num-
ber of connected components in the graph with the similarity
matrix Z.

Denote σj(L(v)) as the jth smallest eigenvalue of (L(v)).
Note that σj(L(v)) ≥ 0 because (L(v)) is positive semidefinite.
According to Ky Fan’s theorem [34], the optimal solution of
Z with the rank constraint can be achieved by solving

min
FTF=I

tr(FTL(v)F). (7)

Thus, the proposed model (6) can be rewritten as

min
Z(v),F

‖Z‖p

Sp
+ β

V∑

v=1

tr
(

FTLZ(v) F
)

s.t. C�
(

Z(v)
)

= C�
(

S̄
(v)
)
,FTF = I

0 ≤ Z(v),Z(v)1 = 1. (8)

It can be seen that the model (8) implicitly assumes that
different views contribute equally to the clustering, resulting
in reducing the flexibility of the method. To further improve
the robustness, we leverage the following adaptively weighting
strategy to encode difference and propose the final objective
function as:

min
Z(v),α(v),F

‖Z‖p

Sp
+ β

V∑

v=1

tr

(
1

α(v)
FTLZ(v) F

)

s.t. C�
(

Z(v)
)

= C�
(

S̄
(v)
)
,FTF = I

0 ≤ Z(v),Z(v)1 = 1,
V∑

v=1

α(v) = 1, α(v) ≥ 0 (9)

where the non-negative α(v) represents the normalized weight-
ing value of the vth view.

C. Optimization

Inspired by the inexact augmented Lagrange multiplier
(ALM) method [35], we introduce auxiliary variables M and
W(v), and rewrite the model (9) as the following unconstrained
problem:

L
(
M,

{
Z(v)

}V

v=1
,
{

W(v)
}V

v=1
, F
)

= ‖M‖p

Sp
+ β

V∑

v=1

1

α(v)
tr(FTLW(v) F)
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+ μ

2

∥∥∥∥Z − M + Q1

μ

∥∥∥∥
2

F
+ μ

2

∥∥∥∥∥Z(v) − W(v) + Q(v)
2

μ

∥∥∥∥∥

2

F

s.t. C�
(

Z(v)
)

= C�
(

S̄
(v)
)

, FTF = I

W(v) ≥ 0, W(v)1 = 1, Z(v) ≥ 0, Z(v)1 = 1 (10)

where Q1 and Q(v)
2 represent the Lagrange multipliers and

μ > 0 is the adaptive penalty factor. Consequently, the
optimization process could be separated into four steps.

1) Z(v)-Subproblem: For updating Z(v), we solving the fol-
lowing problem by fixing the variables M, Q1, Q(v)

2 ,
F, and W(v):

Z(v)∗ = arg min
Z(v)

μ

2

∥∥∥∥∥Z(v) − M(v) + Q(v)
1

μ

∥∥∥∥∥

2

F

+ μ

2

∥∥∥∥∥Z(v) − W(v) + Q(v)
2

μ

∥∥∥∥∥

2

F

+ tr
(

Q(v)
3

T(
C�
(

Z(v) − S̄
(v)
)))

= arg min
Z(v)

μ

∥∥∥∥Z(v) − 1

2
J(v) + 1

2μ
P�
(

Q(v)
3

T)
∥∥∥∥

2

F

(11)

where J(v) = M(v) − Q(v)
1 /μ+ W(v) − Q(v)

2 /μ; Q(v)
3 is a

Lagrange multiplier. We take the derivative of (11) w.r.t.
Z(v) and set it to 0, we have

Z(v)∗ = 1

2
J(v) − 1

2μ
C�
(

Q(v)
3

T)
. (12)

2) M-Subproblem: In this case, model (10) becomes

M∗ = arg min
M

‖M‖p

Sp
+ μ

2

∥∥∥∥Z − M + Q1

μ

∥∥∥∥
2

F
. (13)

To solve the model (13), Theorem 1 is introduced.
Theorem 1 [16]: Suppose Z ∈ R

n1×n2×n3 , h =
min(n1, n2), let Z = U ∗ S ∗ VT . For the following
model:

arg min
M

1

2
‖M − Z‖2

F + τ‖M‖p

Sp
(14)

the optimal solution M∗ is

M∗ = �τ ·n3(Z) = U ∗ ifft
(

Bτ ·n3

(
Z
))

∗ VT (15)

where Bτ ·n3(Z) is a tensor, and the ith frontal slice of

Bτ ·n3(Z) is Bτ ·n3(Z
(i)
).

Thus, from Theorem 1, the solution to model (13) is

M∗ = � 1
ρ

(
Z + 1

μ
Q1

)
. (16)

3) W(v)-subproblem: In this case, model (10) becomes

min
0≤W(v),W(v)1=1

β

V∑

v=1

1

α(v)
tr
(

FTLW(v) F
)

+ μ

2

∥∥∥∥∥Z(v) − W(v) + Q(v)
2

μ

∥∥∥∥∥

2

F

. (17)

By simple algebra, we have

min
W(v)

β
1

α(v)
tr
(

FTLW(v) F
)

+ μ

2

∥∥∥∥∥Z(v) − W(v) + Q(v)
2

μ

∥∥∥∥∥

2

F

+ ϕ(v)T
(W(v)1 − 1)

= min
W(v)

β

2α(v)

∑

i,j

‖Fi,: − Fj,:‖2
2w(v)

ij

+ μ

2
‖W(v) − R(v)‖2

F + ϕ(v)T
(W(v)1 − 1) (18)

where Fi,: and Fj,: are the ith and jth rows of F. We can
see that problem (18) is independent to each row. Letting
R(v) = Z(v) + [Q(v)

2 /μ] and Dij = ∑
i,j ‖Fi,: − Fj,:‖2

2,
then problem (18) can be simplified into the following
problem:

min
W(v)

β

2α(v)
W(v)

i,: D(v)T
i,:

+ μ

2

∥∥∥W(v)
i,: − R(v)

i,:

∥∥∥
2

F
− ϕ

(v)T
i

(
W(v)

i,: 1 − 1
)

= min
W(v)

μ

2

∥∥∥∥W(v)
i,: −

(
R(v)

i,: − β

2μα(v)
D(v)

i,:

)∥∥∥∥
2

F

− ϕ
(v)T
i

(
W(v)

i,: 1 − 1
)

(19)

where ϕ(v)
i is the ith element of vector ϕ(v). The optimal

solution to problem (19) is

w(v)
ij = R(v)

ij − β

μα(v)
Dij + ϕ

(v)
i

μ
(20)

Due to W(v) = max(W(v), 0), all elements of matrixW(v)

are enforced to be not less than 0, that is, the elements
less than 0 in W(v) are set 0, and the remaining ele-
ments are preserved. Due to W(v)1 = 1, the Lagrange
multiplier ϕ(v) can be updated by

ϕ
(v)
i = μ

⎛

⎝1 −
n∑

j=1

R(v)
i,j − β

2μα(v)
D(v)

i,j

)
⎞

⎠/(V − 1). (21)

4) F-Subproblem: The matrix F is optimized by

min
FTF=I

V∑

v=1

1

α(v)
tr
(
FTLW(v) F

)

= min
FTF=I

tr

(
FT

V∑

v=1

1

α(v)
LW(v) F

)
. (22)

The optimal solution F is formed by the K eigenvec-
tors corresponding to the K smallest eigenvalues of
[LW(v)/α(v)].

5) α(v)-Problem: To solve α(v), model (10) becomes

min
α(v)

V∑

v=1

1

α(v)
tr
(
FTLW(v) F

)

s.t.
V∑

v=1

α(v) = 1, α(v) ≥ 0. (23)
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Algorithm 1: Tensor Completion-Based IMC

Input: Data matrix {X(v)}V
v=1, index matrix G(v), parameter β.

Output: The indicator matrix H.
1 Construct S(v) like [36], S̄(v) = G(v)TS(v)G(v);

2 Initialize Q1= 0, Q(v)
2 = 0, Q(v)

3 = 0, ρ=1.1, μ0=10-5, α(v) = 1
V ;

3 while not converge do
4 Update Z(v) by Eq. (12);
5 Update W(v) by Eq. (20);
6 Update M by Eq. (16);
7 Update F by Eq. (22);
8 Update α(v) by Eq. (26);

9 Update μ, Q1, Q(v)
2 , Y(v) by Eq. (27);

10 end
11 return: Indicator matrix H. After obtained F, we can use

K-means to get indicator matrix H.

Letting ψ (v) =
√

tr(FTLW(v) F), then (23) can be writ-
ten as

min
α(v)

V∑

v=1

1

α(v)

(
ψ (v)

)2
s.t.

V∑

v=1

α(v) = 1, α(v) ≥ 0 (24)

Due to
∑V

v=1 α
(v) = 1, according to the Cauchy–Schwarz

inequality, we have

V∑

v=1

ψ (v)2

α(v)
=
(

V∑

v=1

ψ (v)2

α(v)

)(
V∑

v=1

α(v)

)
≥
(

V∑

v=1

ψ (v)

)2

(25)

where the equation holds, if and only if
√
α(v) ∝

[ψ (v)/
√
α(v)]. Because the right-hand side in (25) is a

constant, therefore ∀v = 1, . . . ,V, the optimal α(v) is

α(v) = ψ (v)/

V∑

v=1

ψ (v). (26)

6) Multipliers and Penalty Parameter Problem: The
Lagrange multipliers Q1, Q(v)

2 , and Q(v)
3 and penalty

parameter μ are updated by

Q1 = Q1 + μ(Z − M), μ = min(ρμ, μ0)

Q(v)
2 = Q(v)

2 + μ
(

Z(v) − W(v)
)

Q(v)
3 = Q(v)

3 + μC�(Z(v) −
(

G(v)
)T

S(v)G(v)) (27)

where ρ > 1 is a positive number.
Finally, the pseudocode of solving model (10) is reported
in Algorithm 1. Note that S(v) (v = 1, 2, . . . ,V) are
initialized by the same way as in [36].

D. Computational Complexity

Since matrix J(v) can be calculated in advance in (12) for
solving Z(v), the computational bottleneck of the proposed
algorithm (Algorithm 1) only lies in solving two variable (M
and F). First, solving the M-subproblem involves calculating
the 3D FFT and 3D inverse FFT of an N×V×N tensor and N
SVDs of N×V matrices in the Fourier domain, both of which
are with the complexity of O(2N2Vlog(N)) and O(N2V2).
The computation of updating F is O(N3), since it is with the

eigendecomposition of the N × N matrix. Since in multiview
scenarios, we have N  V and log(N) > V [37], thus, the total
complexity of the proposed method is O(N3 + 2N2Vlog(N))
for each iteration.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup

Datasets: We conduct different clustering tasks to investi-
gate the superiority of the proposed method. These different
tasks involves the following multiview benchmark datasets.

1) Handwritten (HW) Digits Dataset [42]: HW includes
HW digits from 0 to 9. Each digit is composed of 200
images. Thus, this database has 2000 images. In the
experiments, for each digit, we select two views for
clustering. One view is composed of Fourier coefficients
whose dimension is 76. Another view is profile correla-
tions of digits whose dimension (D) is 216.

2) BDGP Dataset [43]: BDGP has 2500 drosophila
embryos images, which are sampled from five differ-
ent classes. Each class has two views: a) visual view
and b) textual view. Each data are presented by 1750-D
vector in visual view and 79-D vector in textual view.
In the following experiments, all samples are used to
evaluate clustering performance.

3) ORL Dataset1: This database has 40 distinct individu-
als. Each individuals have ten images. In the subsequent
experiments, we reshape each image to be 32 × 32, and
then extract three kinds of features, which are 1024-D
LBP, 512-D GIST, and 1024-D pyramid of histogram of
oriented gradients (PHOGs). After that, combining the
aforementioned three types of features and original gray
image, we have four views for multiview clustering.

4) 3 Sources Dataset2: It consists of 984 news articles
which are obtained from three sources: a) Reuters;
b) BBC; and c) Guardian. In the subsequent experiments,
we select 169 stories as gallery. These 169 stories belong
to six different topical labels which are sport, business,
health, technology, entertainment, and politics.

5) BBCSport Databset [44]: This database includes 737
sport news articles which are obtained from the BBC
Sport Website and belong to five categories. Each doc-
ument is presented by two–five views. In the following
experiments, we select 116 documents3 having four
views to evaluate the clustering performance.

Two Kinds of Incomplete Multiview: The following two
kinds of incomplete view data are constructed.

1) Some Samples Have Complete Views: In HW and BDGP
datasets, to form the incomplete multiview datasets, we
randomly choose 10%, 30%, 50%, and 70% paired data
from the corresponding galleries. Then, for 50% of the
rest data, we remove their 1st view, and for additional
50% of the remaining data, we remove their 2nd view.

1http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
2http://erdos.ucd.i.e.,/datasets/3sources.html
3https://github.com/GPMVCDummy/GPMVC/tree/master/partialMV/PVC/

recreateResults/data
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TABLE I
CLUSTERING PERFORMANCES VERSUS DIFFERENT IMPARTIAL RATIO

TABLE II
CLUSTERING RESULTS WHEN HANDLING THE DATA THAT NONE OF THE SAMPLES HAS COMPLETE VIEWS

2) None of the Samples Has Complete Views: For ORL, 3
sources and BBCSport datasets, we randomly remove
55% data for each view and build three incomplete
multiview gallery, which have no paired samples, for
clustering.

Competitors: To evaluate the performances of the proposed
method, the following methods are included, that is:
1) SC [38]; 2) SC with feature concatenation (ConSC) [38];
3) autoweighted multiple graph learning (AMGL) [39];
4) robust multiview SC (RMSC) [40]; 5) PMVC using graph
regularized NMF (GPVC) [41]; 6) incomplete multimodal
visual data grouping (IMG) [24]; 7) best single view
(BSV) [24]; 8) BSV with concatenating all views into a single
view (Concat) [24]; and 9) IMSC-AGL [15].

Evaluation Criteria: Three metrics are employed to evalu-
ate the effectiveness of different methods, that is: 1) Purity;
2) normalized mutual information (NMI); and 3) Accuracy
(ACC). For these three metrics, the higher the value, the bet-
ter the clustering performance. In the following experiments,
we repeat each experiment five times and list mean values of
these three metrics.

Implementation Details: For the proposed method, we
implement it in MATLAB R2018a. There exist two hyper-
parameters in the proposed method, that is, the power p of
tensor Schatten p-norm, and parameter β of the connectivity
constraint. We tune the value of p from 0.1 to 1.0 with step

size 0.1, and tune the value of β in the range of [0.0001, 0.001,
0.005, 0.01, 0.05, 0.1, 0.5, 1, 1.1, 1.5, 5] to obtain the best
results.

B. Experimental Results and Analysis

We compare the clustering results of the proposed method
with several methods w.r.t. under two kinds of incomplete view
settings. To be specific, Table I reports the clustering results
of different methods under the first kind of incomplete view
data, Table II reports the clustering results of different methods
under the second kind of incomplete view data. From Tables I
and II, we have the following interesting observations.

1) In most cases, the clustering results of Single-view meth-
ods, that is, SC and ConSC, are overall inferior to
multiview methods. The reason may be that multiview
methods may leverage the complementary information
embedded in multiview data, while the single-view
method does not. Meanwhile. when using the concate-
nated view features, the performances of ConSC defeat
the methods that using the single-view features on the
HW dataset, even the results of ConSC are better than
some methods with the multiview setting. In contrast, the
proposed method obtains superior results than both SC
and ConSC, the pivotal reason behind this is that the
proposed model explores more informative knowledge
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(a) (b)

Fig. 2. Clustering performances of our method with the varying value of p on (a) BBCSport and (b) 3 Sources datasets.

embedded in single-view features via the proposed
tensor Schatten p-norm based complete technique.

2) When dealing with incomplete data, as shown in Table I,
the clustering results of several multiview methods, for
example, AMGL and RMSC, are inferior to single-view
methods. These results show that data missing can eas-
ily affect the performance of these methods. Moreover,
to handle the incomplete multiview clustering problem,
these methods uses the average instances to fill the miss-
ing instances, these results also demonstrate that the
clustering results obtained under such a data completion
technique are inferior.

3) Comparatively, the proposed method overall outper-
forms the second-best competitor, that is, IMSC-AGL.
The reason maybe that we employ the tensor Schatten
p-norm based complete technique to learn the consen-
sus graph, which helps to characterize the similarity
structure of interview graphs. Thus, the learned graph
well exploits both the spatial structure and complemen-
tary information embedded in graphs of different views.
Meanwhile, the connectivity constraint on the learned
graph helps to characterize the cluster structure of data.

4) When handling data that none of the samples has com-
plete views, the performance of the proposed method
is still satisfactory. For example, in Table II, compar-
ing with the strongest competitor, that is, IMSC-AGL
on the 3 Sources dataset, the ACC, NMI, and Purity are
improved about 23.56%, 20.38%, and 14.81%, respec-
tively, the ACC, NMI, and Purity are improved about
8.45%, 11.08%, and 7.24% on the BBCSport dataset,
respectively. This is because we leverage the tensor
Schatten p-norm-based complete technique to construct
the graph of entire data including missing view, the
learned graph via such a strategy well preserves the
relationship between the unmissing data. These results
strongly indicate that the proposed method is very effec-
tive in clustering the multiview data that none of the
samples has complete views.

5) For the results based on the second kind of incom-
plete multiview data, the proposed model significantly
and consistently outperforms the single-view clustering
method, for example, BSV and Concat. Specifically,
on the ORL dataset, in terms of Purity and NMI, it

TABLE III
CLUSTERING RESULTS W./W.O. ADAPTIVE WEIGHTING STRATEGY,

WHERE ✗ MEANS WITHOUT THE ADAPTIVE WEIGHTING STRATEGY

improves over the second-best single-view Concat by
19.29% and 20.96%, respectively. This is because the
proposed method takes into account the contributions of
different views by the adaptive weighting strategy, which
helps encode the discriminant information embedded in
multiple graphs.

C. Ablation Studies

In this section, we conduct ablation studies to further
verify the effectiveness of each component, that is, the ten-
sor Schatten p-norm and adaptive weighting strategy, in the
proposed method.

1) Effect of Tensor Schatten p-Norm: To this end, Fig. 2
plots the clustering results, that is, ACC and NMI, versus
parameter p on the BBCSport and 3 Sources datasets. From
Fig. 2, we can see that the performance of our method has
large fluctuation with varying p. When p �= 1, the clustering
performance of our method is overall superior to that under
p = 1. Note that when p = 1, tensor Schatten p-norm degen-
erates to tensor nuclear norm [32]. On the BBCSport and
3 Sources datasets, when p equals 0.5 and 0.3, respectively,
our method obtains the best ACC and NMI that are remark-
ably superior to that under p = 1. These results indicate that
tensor Schatten p-norm makes the rank of the learned graph
approximate the target rank well.

2) Effect of Adaptive Weighting Strategy: Moreover, we
compare the clustering results w./w.o. the adaptive weight-
ing strategy. It should be pointed out that when we remove
the adaptive weighting strategy from (9), α(v) = 1/V. As can
be seen in Table III, the adaptive weighting strategy plays an
indispensable role in multiview clustering.
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(a) (b)

Fig. 3. Convergence results on the ORL dataset. (a) Error convergence curves. (b) Clustering results convergence curves.

D. Convergence Analysis

In [35], the convergence of ALM has been well proved
when the number of blocks is at most two, whereas its con-
vergence is still an open problem when number of blocks
is greater than or equal to three [45]. Since there are four
variables (M, {Z(v)}V

v=1, {W(v)}V
v=1) and F in our proposed

method, and the objective function is not smooth, it would
be difficult to prove the convergence in theory. Fortunately,
experimental results on real datasets indicate that the proposed
method has a good convergence property. In Fig. 3(a), we
show the errors of variables of the proposed method in each
iteration on the ORL dataset. Here, the errors of variables
are CC1 = ‖Z(v)

t+1 − Z(v)
t ‖∞, CC2 = ‖Mt+1 − Mt‖∞ and

CC3 = ‖M(v)
t − Z(v)

t ‖∞. According to Fig. 3(a), the results
verify that the proposed method can achieve convergence
within a few iterations. Moreover, in Fig. 3(b), we show
the clustering results versus iteration number. According to
Fig. 3(b), we can see that the proposed method obtains rela-
tively stable clustering performance within a few iterations.
These results well indicate that the proposed method can
converges quickly.

V. CONCLUSION

In this article, we completed the incomplete graph with
missing data referring to tensor complete, and presented an
effective incomplete multiview clustering model. To take the
similarity structure of interview graphs into account, the tensor
Schatten p-norm-based completion technique was leveraged to
complete the entire graph, which can guarantee that the learned
entire graph not only has low-rank structure but also well pre-
serves the relationship between the unmissing data. After that,
the connectivity constraint was employed on the learned graph
to make sure that the connected components approximately
indicate clusters. This also helps guide the tensor completion.
Extensive experimental results indicated the efficacy of the
proposed incomplete multiview clustering method on kinds of
datasets in terms of three evaluation metrics. In the future, we
plan to investigate the deep learning-based tensor completion
method for incomplete multiview clustering.
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