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a b s t r a c t

Multi-view clustering has become an active topic in artificial intelligence. Yet, similar investigation
for graph-structured data clustering has been absent so far. To fill this gap, we present a Multi-View
Graph embedding Clustering network (MVGC). Specifically, unlike traditional multi-view construction
methods, which are only suitable to describe Euclidean structure data, we leverage Euler transform
to augment the node attribute, as a new view descriptor, for non-Euclidean structure data. Mean-
while, we impose block diagonal representation constraint, which is measured by the ℓ1,2-norm,
on self-expression coefficient matrix to well explore the cluster structure. By doing so, the learned
view-consensus coefficient matrix well encodes the discriminative information. Moreover, we make
use of the learned clustering labels to guide the learnings of node representation and coefficient
matrix, where the latter is used in turn to conduct the subsequent clustering. In this way, clustering
and representation learning are seamlessly connected, with the aim to achieve better clustering
performance. Extensive experimental results indicate that MVGC is superior to 11 state-of-the-art
methods on four benchmark datasets. In particular, MVGC achieves an Accuracy of 96.17% (53.31%)
on the ACM (IMDB) dataset, which is an up to 2.85% (1.97%) clustering performance improvement
compared with the strongest baseline.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

As we embark on the Internet era, graph-structured data,
uch as data from citation networks, movie networks and social
etworks, are all around us. Due to the efficiency of revealing the
ntrinsic relationships of data, graph-structured data analysis has
ecome prevalent in artificial intelligence community (Li, Müller,
hanem, & Koltun, 2021; Nikolentzos, Dasoulas, & Vazirgiannis,
020; Wu, Pan, Chen, Long, Zhang, & Yu, 2020; Xie, Zhang, Gong,
ang, & Han, 2020). To date, studies propose massive amounts
f graph based learning methods, which can be divided into
hree main categories according to different input, i.e., (1) tak-
ng the node attribute as input; (2) taking the graph structure
s input; and (3) simultaneous taking the node attribute and
raph structure as input. The first two categories of methods take
he node attribute or graph structure as input, then learn new
epresentation of data for downstream tasks (Kumar, Rai, & III,
011; Luo, Huang, Ma, & Liu, 2016; Luo, Zhang, Du, & Zhang,

∗ Corresponding author.
E-mail address: qxgao@xidian.edu.cn (Q. Gao).
ttps://doi.org/10.1016/j.neunet.2021.10.006
893-6080/© 2021 Elsevier Ltd. All rights reserved.
2020; Nie, Cai, Li, & Li, 2018; Wu, Lin, & Zha, 2019; Xie, Gao,
Deng, Yang, & Gao, 2021). Although the first two categories have
gained satisfactory results, they cannot simultaneously explore
the information hidden in node attribute and graph structure,
resulting in inferior latent representation of data. To this end,
the third class represented by graph neural networks (GNNs) has
become powerful tool for many machine learning tasks.

In view of the fact that manually labeling graph-structured
data is time-consuming and expensive, in this paper, we study the
GNNs based graph-structured data clustering problem. Clustering,
which plays a crucial role in unsupervised learning, aims to divide
data into several disjoint groups such that the data in the same
group are similar to each other, while data in different groups are
dissimilar. Numerous clustering methods have been presented,
among which graph embedding clustering is one of the most
representative clustering techniques due to its effectiveness in
characterizing graph-structured data.

The goal of graph embedding is to learn a compact and contin-
uous node representation. One of the most representative meth-
ods is graph auto-encoder (GAE) (Kipf & Welling, 2016). It en-
codes graph structure and node attribute to a node represen-
tation, on which a decoder is trained to reconstruct the graph

https://doi.org/10.1016/j.neunet.2021.10.006
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2021.10.006&domain=pdf
mailto:qxgao@xidian.edu.cn
https://doi.org/10.1016/j.neunet.2021.10.006
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Fig. 1. Illustrations of block diagonal representation.

tructure. To improve the robustness of node representation, Pan
t al. (2018) incorporated adversarial learning to GAE and devel-
ped adversarial regularized graph auto-encoder (ARGE). How-
ver, both GAE and ARGE carry out node representation and
lustering separately, thus resulting in suboptimal performance.
o this end, Wang et al. (2019) integrated cluster centers learning
nd graph embedding into a unified framework, and proposed
eep attentional embedded graph clustering method (DAEGC).
imilarly, Bo, Wang, Shi, Zhu, Lu, and Cui (2020) proposed a
tructural deep embedded clustering network (SDCN), which is
ffective for node clustering.
Extensive studies have demonstrated that, compared with

ingle-view data, multi-view data provide more complemen-
ary information embedded in different views (Gao, Xia, Wan,
ie, & Zhang, 2020; Xie et al., 2021; Xie, Zhang et al., 2020;
ie, Zhang, Qu, Dai, & Tao, 2020; Xu, Zhang, Xia, Gao, & Gao,
020). Therefore, multi-view learning has attracted more and
ore attention. Drawing inspiration from multi-view learning,
everal studies bring graph neural networks (GCNs) to multi-
iew learning (Khan & Blumenstock, 2019; Li, Li, & Wang, 2020).
espite the promising preliminary results, they mainly study
emi-supervised learning tasks. To solve this problem, inspired by
eep embedding clustering model (Xie, Girshick, & Farhadi, 2016)
DEC), Cheng, Wang, Tao, Xie, and Gao (2020) employed the graph
ncoder to learn low-dimensional node representation for each
iew, then calculated the view-specific probability distribution
(v) and view-consensus probability distribution P(v), where v is

the vth view. By minimizing the discrepancy between Q(v) and
(v), they proposed a new multi-view attribute graph convolu-
ion networks for clustering (MAGCN for short in this paper).
imilarly, Fan, Wang, Shi, Lu, Lin, and Wang (2020) proposed a
ne to multiple graph auto-encoders (O2MAC) to solve multi-
iew attributed graph clustering problem. It firstly learns a shared
ode representation by leveraging one informative graph view
nd node attribute to reconstruct multiple graph views, then,
everages the probability distribution constraint for clustering.

Although achieving comparable results, both MAGCN and
2MAC still suffer from two bottlenecks.

1. When extracting the view-consensus node representation,
they neglect the block diagonal representation learning.
Therefore, the node representation cannot characterize the
cluster structure. For example, suppose there are three
classes C1, C2, C3. Fig. 1 shows the block diagonal represen-
tation Z of nodes, where Z1, Z2, Z3 are node representations
corresponding to C1, C2, C3. We find that the nonzero en-
tries Zk correspond to only Ck, where k ∈ {1, 2, 3} means
the kth cluster. Above node representation Z well reveals
the true membership of data and is very discriminative
2

for clustering. Therefore, the block diagonal representation
plays an important role in node clustering analysis (Lu,
Feng, Lin, Mei, & Yan, 2019).

2. They failed to make full use of the information embedded
in the learned clustering labels, thus leading to inferior
results. In fact, although the clustering labels are inaccurate
during network training, some data with accurate labels
will propagate useful information, which is of benefit for
achieving better clustering (Lv, Kang, Lu, & Xu, 2021).

To solve the above problems, we propose a Multi-View Graph
mbedding Clustering network (MVGC), which is characterized

by joint self-supervision and block diagonal representation (See
Fig. 2). More specifically, to well exploit the cluster structure,
we learn view-consensus coefficient matrix with block diagonal
representation constraint (measured by the ℓ1,2-norm), such that
the coefficient representation possibly leads to correct clustering.
Moreover, we make good use of the clustering labels to super-
vise the learnings of node representation and coefficient matrix,
and the latter is employed in turn to conduct the subsequent
clustering. In this way, the representation learning and clustering
are seamlessly connected, despite the absence of supervisory sig-
nals, such an incorporation enables the overall framework to be
trained towards achieving better clustering results. In particular,
we make the following contributions:

1. We discover that the ℓ1,2-norm plays a crucial role in
characterizing block diagonal property, and then apply it
to learn coefficient representation which well exploits the
cluster structure. To the best of our knowledge, this is the
first attempt to take block diagonal property into account
in multi-view GCNs based clustering. Thanks to its simple-
ness, our method can be easily plugged into deep neural
networks, thus facilitating real applications.

2. We make full use of the clustering labels to guide the
optimization of the overall framework covering node rep-
resentation and coefficient matrix, where the latter is em-
ployed in turn to conduct the subsequent clustering. In
this way, in spite of the absence of supervisory signals, the
overall framework is trained with the aim to achieve better
clustering performance. Hence, we assume that this paper
could provide insight toward the GCN based multi-view
unsupervised learning.

3. Extensive experimental results show the promising clus-
tering performance of the proposed method comparing
with 11 state-of-the-art approaches on four challenging
benchmark datasets.

. Notations and preliminary

For convenience, we first introduce the notations and defi-
itions that will be used in the paper. We use bold upper case
etters for matrices, e.g., M, bold lower case letters for vectors, e.g.,
. The Frobenius norm of M ∈ Rn×d is ∥M∥F =

√∑n
i=1

∑d
j=1 M

2
ij ,

here Mij is the entries of M. ∥M∥
2
1,2 =

∑n
i=1 ∥mi∥

2
1 =

∑n
i=1(∑d

j=1

⏐⏐Mij
⏐⏐)2

is the ℓ1,2-norm of a matrix M.

Definition 1 (Multi-attribute Multi-view Graph and Nodes Cluster-
ing). Multi-attribute multi-view graph is represented as G =

{O, E(1), . . . , E(V ),X(1), . . . ,X(V )
}, where O = {oi}ni=1 is a set of

nodes in a graph and E(v)
ij ∈ E is the edge between the node i

and j in the graph structure of the vth view (v = 1, . . . , V ). The
topological structure of G can be represented by adjacency matrix
A(v)

}, and A(v)
ij = 1 if E(v)

ij ∈ E, otherwise A(v)
ij = 0. x(v)i ∈ X(v)

ndicates the attribute of the vth view associated with node o .
i
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Fig. 2. The flowchart of the proposed Multi-View Graph embedding Clustering network (MVGC).
T

Given the multi-attribute multi-view graph G, nodes clustering
ims to partition nodes in G into K disjoint clusters C1, . . . , CK ,
uch that the nodes in the same cluster have high correlation to
ach other.

. Methodology

In this section, taking the two-view node clustering problem
or example, we first introduce how to effectively augment at-
ributes for graph-structured data, then we present the proposed
VGC for nodes clustering in an end-to-end manner.

.1. Attribute augmentation

O2MAC is a representative of multi-view graph-structured
ata clustering method. Despite impressive clustering results, it
s easy to see that O2MAC suffers from inadequate multi-view
ode representation learning due to simply encoding single-view
ode attribute and its corresponding graph structure. To boost
he performance of multi-view learning, we propose to construct
new node attribute as a view for node clustering. With the

haracteristics of multi-view data, a simple and effective method
s to construct multiple attributes directly by using the existing
eature extraction methods, e.g., Gabor, SIFT, LBP, GIST and HOG.
owever, these methods are suitable for processing data with a
uclidean structure, e.g., face and objects. We herein study graph-
tructured data from non-Euclidean domains. With regard to this,
nspired by the fact that kernel trick can capture the nonlinear
eatures (Liao et al., 2018; Liwicki, Tzimiropoulos, Zafeiriou, &
antic, 2013), we discover that Euler transform can efficiently
haracterize graph-structured data. Hence, we augment the raw
ode attribute via the Euler transform. To be specific, given a raw
ttribute xi ∈ R1×d0 , its Euler representation can be represented
y

i =
1

√
2

⎡⎢⎣ ejαπXi1

...
jαπX 0

⎤⎥⎦ =
1

√
2
ejαπxi , (1)
e id

3

where α ∈ R+ is a parameter that is adjusted to suppress the
values caused by outliers. In this article, similar to Liao et al.
(2018), we take α = 1.1 for all datasets without further tuning.
bi ∈ B ∈ Rn×d0 , n and d0 are the number of nodes and attribute
dimension. By doing so, we can obtain a new node attribute
matrix X(2) = B, raw node attribute is X(1) ∈ Rn×d0 .

3.2. Multi-view node subspace clustering module

Multi-view node subspace clustering aims to learn a coef-
ficient representation which is shared by multiple views, then
assigning each node into one of K clusters in this new subspace.
With regard to this, MVGC progressively encodes both graph
structure A(v) and node attribute X(v) of vth view into a repre-
sentation H(v) via a two-layer graph convolution encoder E (v)

[·].
hus, the representation H(v) can be expressed as

H(v)
= E (v)

Linear[X
(v),A(v)

|W(v)
(2)]

= fLinear (̃D(v)
−

1
2 Ã(v)D̃(v)

−
1
2 H(v)

(1)W
(v)

(2))
(2)

where Ã(v) = A(v) + I, D̃(v)

ii =
∑

j Ã
(v)

ij , I is an identity matrix,
fLinear(·) represents the linear activation function. H(v)

(1) is the out-
put of first layer convolution operation and H(v)

(0) = X(v). W(v)
(2) is a

matrix of filter parameters we need to learn in the second layer
of vth view encoder.

Self-Expression Module. To make the latent representation
H(v) be more suitable for subspace clustering than raw node at-
tribute and graph structure, we herein employ the self-expressive
learning to learn a shared self-expressive coefficient representa-
tion Z. To this end, MVGC minimizes the following self-expression
loss:

L1 = min
Z,H(v),θ

V∑
v=1

∥H(v)Z − H(v)
∥
2
F , (3)
s.t., diag(Z) = 0,
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here Z ∈ Rn×n is the coefficient representation, θ represents the
arameter of multi-view graph auto-encoder. To avoid the trivial
olution Z = I, we set the constraint term diag(Z) = 0.
To make sure that the learned node representation H(v) pre-

serves sufficient graph structure information, the new represen-
tation H(v)Z of vth view is subsequently fed into the inner product
decoder to predict whether there is a link between two nodes. We
give the reconstruction loss by

L0 = min
H(v),θ

V∑
v=1

E[− log(̂A(v))]

= min
H(v),θ

−

V∑
v=1

N∑
i,j=1

[
A(v)
i,j log(̂A(v)

i,j ) + (1 − A(v)
i,j ) log(1 − Â(v)

i,j )
]
,

(4)

where Â(v)
= sigmoid(S(v)S(v)T ), S(v) = H(v)Z is the self-expressed

representation. Â(v)
i,j predicts the links between nodes i and j in

the vth view, and Â(v)
i,j = 1 if the ith node links the jth node.

By minimizing above graph structure reconstruction loss, we can
minimize the discrepancy between the input graph A(v) and the
reconstructed graph Â(v).

Consistent Representation Constraint. To make sure that the
MVGC can learn a consistent subspace Z among different views,
we herein employ a consistent representation constraint to cap-
ture the geometric relationship similarity embedded in different
views. Thus, we have

L2 = min
θ,H(v)

V∑
v ̸=i

∥H(v)
− H(i)

∥
2
F . (5)

When we obtain the self-expressive coefficient matrix Z, the
induced affinity matrix Λ can be calculated by Λ =

1
2

(
|Z| +

⏐⏐ZT
⏐⏐).

inally, we can obtain the node clustering labels by applying a
pectral clustering method on Λ. In this paper, we employ the
roperty of normalized cut (NCut) (Shi & Malik, 2000) method to
et the node clustering results.

.3. Block diagonal representation constraint

For the learned self-expressive coefficient matrix Z, we hope it
an well characterize the cluster structure. Specifically, we hope
he learned coefficient matrix Z complies with the block diagonal
roperty (BDP) (Lu et al., 2019), i.e., Z is K -block diagonal, where
he nonzero entries {Zj}

K
j=1 correspond to only {Xj}

K
j=1, Xj repre-

ents the nodes from jth cluster. Such property possibly leads to
orrect clustering. However, existing node clustering methods fail
o take the BDP into consideration, resulting in inferior perfor-
ance. To this end, we employ the ℓ1,2-norm to constrain the
elf-expressive coefficient representation. Thus, we have

L3 = min
Z

∥Z∥
2
1,2 = min

Z

n∑
i=1

∥zi∥2
1

= min
Z

n∑
i=1

⎛⎝ n∑
j=1

⏐⏐Zij⏐⏐
⎞⎠2

.

(6)

By minimizing Eq. (6), different elements in squared ℓ1-norm
f ith row zi are competing with each other to survive, and

at least one element in row zi survives (remaining non-zero).
y doing so, some discriminative features are survived for each
luster to provide certain flexibility in the learned coefficient
epresentation, i.e., making Z well preserve the block diagonal

property.

4

3.4. Dual self-supervised mechanism

To make full use of information in the learned clustering labels
, we use L̂ to provide feedback to both self-expression module
nd latent representation learning module. The above idea can be
ulfilled as follows.

Self-supervision for Latent Representation. We utilize the
earned clustering labels L̂ to supervise the latent representation
(v). To this end, we feed H(v) into a self-classification module to
arry out a classification task. Let Ŷ(v) be the self-classification
odule of vth view, where Ŷ(v) ∈ Rn×K . Here, L̂ is treated
s the target output of self-classification module. To train the
raph encoder of vth view via self-supervision information, we
ntroduce a mixture of cross-entropy (CE) loss and center loss,
hich is defined as

L4 = min
θ,φ,H(v)

1
n

V∑
v=1

(CE(̂L, Ŷ(v)) + γ ∥̂Y(v)
− δπ (̂L)∥2

F ), (7)

where 0 < γ ≤ 1 is a trade-off parameter, φ represents
the parameters of self-classification module. δπ (̂L) is the corre-
ponding cluster center of Ŷ(v). The second term in Eq. (7) is the
enter loss which helps compress the intra-cluster variations. In
his article, the self-classification module consists of a two-layer
ully-connected network.

Self-supervision for Self-expression. We utilize the cluster-
ng labels L̂ produced by the last iteration to supervise the self-
xpressive coefficient matrix Z. Specifically, for self-expression
oefficient representation Z, an entry Zij is nonzero only if the ith
nd jth nodes have the same cluster labels. Hence, the cluster-
ng results produced by the last iteration can provide the rich
nformation for fine-tuning the coefficient matrix Z, which is
ignificant for node subspace clustering. To this end, inspired
y Zhang et al. (2019), we minimize the discrepancy between Z
nd the pseudo label matrix L̂. Thus, we have

L5 = min
Z

n∑
i,j=0

|Zij|
∥̂li − l̂j∥2

2

2
, (8)

where l̂i ,̂ lj ∈ L̂ represent the label vector corresponding to the
ith and jth nodes, respectively.

3.5. Implementation details

Consequently, we integrate the above concerns into an end-
to-end framework, then the objective of MVGC is induced as

L = min
θ,φ,H(v),Z

L0 + λ1L1 + λ2L2 + λ3L3 + λ4L4 + λ5L5, (9)

where λi, i = 1, . . . , 5 are trade-off parameters.
We optimize L by the Adam optimizer (Kingma & Ba, 2015).

The dimension of graph encoder is d0 → d1 → d2, where d0
is the dimension of the raw node attribute. The dimensions of
self-classification module is d2 → 1024 → K . The learning rate
f MVGC is 3.0 × 10−5. Due to the clustering results provided
y spectral clustering are up to an unknown permutation, the
lustering labels from two successive iterations might not be con-
istent. We adopt the Hungarian (Munkres., 1957) method to find
n optimal alignment between the clustering labels of previous
terations. To improve stability, we update the other parameters
n MVGC for 5 epochs, and then update L̂ by performing spectral
lustering on Λ.
Note that, to avoid trivial solutions, we set the diagonal con-

traint on Z, i.e., diag(Z) = 0. To this end, motivated by Elhamifar
nd Vidal (2013), Ji, Zhang, Li, Salzmann, and Reid (2017), taking
he Python with TensorFlow 1.× platform as an example, we can
do a simple trick as follows:
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Algorithm 1: MVGC

Input: Node attribute: {X(v)
}
V
v=1 ∈ Rn×d0 , graph structure:

{A(v)
}
V
v=1 ∈ Rn×n, cluster number K , parameters λ1, λ2,

λ3, λ4, λ5.
Output: Clustering label L̂.
Initialize graph attention auto-encoder, self-expressive
coefficient matrix Z and self-supervised module;
// Extract multi-view representation
Obtain the node representation H(v) by Eq. (2);
// Calculate clustering label
Run spectral clustering on Λ =

1
2

(
|Z| +

⏐⏐ZT
⏐⏐) to get clustering

abel L̂;
/ Extract the output of self-supervision for node
representation module

et Ŷ(v) by encoding node representation H(v);
/ Optimization
hile not converge do
Fix clustering label L̂, and update other parameters of MVGC
by Eq. (9);
if Iter % 5 ==0 then

// Calculate coefficient matrix
Calculate the coefficient matrix C;
// Calculate clustering label
Run spectral clustering on Λ =

1
2

(
|Z| +

⏐⏐ZT
⏐⏐) to update L̂;

end
end
return: Clustering label L̂.

import tensorflow as tf
# Assuming the node representation after the graph encoder
# of v-th view is H_v and before passing to the decoder,
# Z is the coefficient matrix
# ZH_v is the self-expressed representation
ZH_v = tf.matmul((Z-tf.diag(tf.diag_part(Z))), H_v)

In this way, the diagonal of Z is set to zero. Finally, we
ummarize the optimization procedure of the proposed MVGC in
lgorithm 1.

.6. Discussions

⋆ The differences between MVGC and MAGCN
Although MAGCN (Cheng et al., 2020) also leveraged the Eu-

er transform to construct multi-view descriptor, the proposed
VGC is significantly different from Cheng et al. (2020) in the

ollowing main aspects:

1. The motivation is different. Cheng et al. (2020) required
the discrepancy between view-specific node distribution
and view-consensus node distribution that could be as
small as possible, and thus, a consistent embedding space
can be effectively found for clustering. In contrast, our
model aims to solve the GCN based multi-view subspace
clustering, i.e., we target at learning a good self-expressed
coefficient matrix shared by different views for node clus-
tering.

2. The objective is different. Cheng et al. (2020) explicitly
minimized the mismatch between view-specific proba-
bility distribution and view-consensus probability distri-
bution, In contrast, our model does not need this part.
Moreover, Cheng et al. (2020) also explicitly minimized
the reconstruction error between input and output node
attribute, which adopted extra node attribute decoder,
5

whereas our model is a forward neural network that only
require parameter-free inner product decoder to recon-
struct the input graph itself. In consequence, our method
does not need to seek a good tradeoff between the attribute
reconstruction and graph reconstruction errors and then
enjoy a smaller parameter size.

3. In the proposed MVGC, the BDP constraint is imposed on
coefficient matrix to well exploit the cluster structure. We
also utilize the clustering labels to guide the learnings
of node representation and coefficient matrix via a self-
supervised manner. In contrast, Cheng et al. (2020) failed
to consider them.

⋆ Block Diagonal Representation Regularizer
In this paper, we leverage the good property of ℓ1,2-norm to

constrain the self-expressed coefficient matrix Z, which is defined
as

min
Z

∥Z∥
2
1,2 = min

Z

n∑
i=1

∥zi∥2
1 = min

Z

n∑
i=1

⎛⎝ n∑
j=1

⏐⏐Zij⏐⏐
⎞⎠2

, (10)

by minimizing Eq. (10), different elements in squared ℓ1-norm of
ith row zi are competing with each other to survive, and at least
one element in row zi remains non-zero (Ming & Ding, 2019).
By doing so, some discriminative features are survived for each
cluster to provide certain flexibility in the learned coefficient ma-
trix, i.e., Z obeys the block diagonal property, where the nonzero
entries Zk correspond to only Ck, k ∈ {1, . . . , K }, Ck means
the nodes in kth cluster, Zk is the corresponding self-expressed
coefficient, K is the number of clusters.

Lu et al. proposed an alternative block diagonal regularizer,
namely k-block diagonal regularizer, which is defined as the sum
of the k smallest eigenvalues of LZ (Lu et al., 2019), i.e.,

∥Z∥
k

=

n∑
i=n−k+1

ρi (LZ) , (11)

where LZ is the Laplacian matrix of Z, ρi (LZ) (i ∈ {1, . . . , n}) is
the eigenvalues of LZ in the decreasing order.

By definition, we implement block diagonal constraints dif-
erently. Our introduced manner, ℓ1,2-norm regularizer, approx-
imates the block diagonal representation matrix by using the
structure priors, i.e., sparsity and smoothness, which is indirect.
In contrast, Lu et al. leveraged an enforced block diagonal condi-
tions, which is more direct. From the perspective of deep neural
network optimization, our introduced block diagonal represen-
tation regularizer is easy to be implemented. In contrast, direct
optimization of Eq. (11) is arduous in deep neural networks. We
will continue to study this problem.

4. Experiments

We conducted extensive experiments to validate the effective-
ness of the proposed MVGC and the proposed attribute augmen-
tation and block diagonal representation strategies.

4.1. Experimental setup

We implement the proposed MVGC in TensorFlow 1.13.1 plat-
form based on Python 3.6. All the experiments are conducted on
a machine with an Intel (R) Xeon (R) Gold 6230 CPU and dual
NVIDIA Tesla P100-PCIE GPUs.

Datasets. The proposed MVGC along with the compared meth-

ods are tested on four real-world datasets, i.e., ACM (Tang et al.,
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able 1
he numerical introduction to real datasets, where # means ‘‘the number of’’.
Dataset Size Attribute Dimension # Edges in each view

graph
# Class Attribute content Clustering target

ACM (Tang, Zhang, Yao,
Li, Zhang, & Su, 2008)

3,025 1,870 subject (2,210,761), pa-
per (29,281)

3 Paper’s keywords Paper’s research area

DBLP (Pan, Wu, Zhu,
Zhang, & Wang, 2016)

4,057 334 conf (5,000,495), term
(6,776,335), author
(11,113)

4 Author’s keywords Author’s research area

IMDB (Fan et al., 2020) 4,780 1,232 actor (98,010), director
(21,018)

3 Movie plot’s keywords Movie’s genre

HHAR (Stisen et al., 2015) 10,299 561 top-3 and top-5 nearest
neighbor graph views

6 Sensor records Human’s activity
Table 2
Aggregated results of different methods on ACM, DBLP and IMDB datasets. ‘‘OM’’ is out-of-memory error. ‘‘N/A’’ means not applicable.
Datasets ACM DBLP IMDB

Metric ACC F1 NMI ARI ACC F1 NMI ARI ACC F1 NMI ARI

LINE (Tang, Qu, Wang, Zhang, Yan, & Mei, 2015) 64.79 65.95 39.41 34.33 86.89 85.46 66.76 69.88 42.68 28.70 0.31 N/A
GAE (Kipf & Welling, 2016) 84.52 84.65 55.38 59.46 61.21 61.41 30.80 22.02 42.98 40.62 4.02 4.73
ARGAE (Pan et al., 2018) 84.33 84.51 54.54 60.64 58.16 59.38 29.51 23.92 41.19 36.85 0.63 N/A
DAEGC (Wang et al., 2019) 86.94 87.07 56.18 59.35 62.05 61.75 32.49 21.03 N/A N/A N/A N/A
SDCN (Bo et al., 2020) 90.45 90.42 68.31 73.91 68.05 67.71 39.50 39.15 46.97 31.83 2.85 2.84

MNE (Zhang, Qiu, Yi, & Song, 2018) 63.70 64.79 29.99 24.86 OM OM OM OM 39.58 33.16 0.17 0.08
RMSC (Xia, Pan, Du, & Yin, 2014) 63.15 57.46 39.73 33.12 89.94 82.48 71.11 76.47 27.02 37.75 0.54 0.18
PWMC (Nie, Li, & Li, 2017) 41.62 37.83 3.32 3.95 32.53 28.08 1.90 1.59 24.53 31.64 0.23 0.17
SWMC (Nie et al., 2017) 38.31 47.09 8.38 1.87 65.38 56.02 37.60 38.00 26.71 37.14 0.56 0.04
O2MAC-Gabor (Fan et al., 2020) 72.53 72.97 47.88 44.75 72.93 73.02 47.21 44.42 40.55 33.89 2.56 4.82
O2MAC-FFT (Fan et al., 2020) 77.22 77.66 49.07 48.31 85.65 85.09 66.18 67.39 42.65 36.99 4.27 5.61
O2MAC-Cartesian (Fan et al., 2020) 64.40 64.50 20.53 22.97 85.21 84.67 62.85 65.99 41.72 36.63 3.31 5.43
O2MAC-Eular (Fan et al., 2020) 88.50 88.58 64.48 69.36 88.88 88.31 69.60 73.87 43.56 38.63 4.44 6.01
O2MAC (Fan et al., 2020) 90.42 90.53 69.23 73.94 90.74 90.13 72.87 77.80 45.02 41.59 5.24 7.53
MAGCN (Cheng et al., 2020) 93.32 93.33 75.70 80.79 88.91 88.17 70.70 74.54 51.34 35.18 4.18 6.62

MVGC-Gabor 85.32 85.05 63.27 63.08 81.53 81.72 62.49 57.95 45.67 36.98 1.63 3.68
MVGC-FFT 88.10 88.04 66.55 67.78 86.96 86.31 68.51 70.53 49.58 34.31 1.54 4.45
MVGC-Cartesian 94.08 94.07 77.68 82.95 88.07 87.23 69.11 72.94 50.19 39.59 3.13 6.91
MVGC-Eular 96.17 96.08 84.38 89.17 92.33 92.25 74.24 80.41 53.31 39.53 6.23 8.48
1
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2008),1 DBLP (Pan et al., 2016),2 IMDB (Fan et al., 2020)3 and
heterogeneity human activity recognition (HHAR) dataset (Stisen
et al., 2015) as described in Table 1. For all datasets, the 2-
nd view’s attribute is constructed from the corresponding raw
attribute by Euler transformation, α is set to 1.1 for all dataset.
Similar to Fan et al. (2020), we select the most informative graph
view A(∗) as graph structure, i.e., A(v)

= A(∗).
Comparisons. We compare the proposed MVGC with 11 rep-

resentative methods, i.e., large-scale information network em-
bedding (LINE) (Tang et al., 2015), GAE (Kipf & Welling, 2016),
ARGAE (Pan et al., 2018), scalable multi-view network embedding
(MNE) (Zhang et al., 2018), robust multi-view spectral clustering
method (RMSC) (Xia et al., 2014), DAEGC (Wang et al., 2019),
SDCN (Bo et al., 2020), PWMC (Nie et al., 2017), SWMC (Nie et al.,
2017), O2MAC (Fan et al., 2020) and MAGCN (Cheng et al., 2020).
For the methods with multi-view setting, we use the multi-view
graph adjacency matrices as the input. For the methods with
single-view setting, we use the most informative graph view A(∗)

and raw node attribute as the input.
Evaluation Metrics. We employ four widely used measures to

evaluate the clustering performances, which are accuracy (ACC),
normalized mutual information (NMI), average rand index (ARI)
and macro F1-score (F1) respectively. For all metrics, a higher
score indicates a better clustering quality.

Parameter Setting. To obtain a balance amongst different
term in Eq. (9), the trade-off parameters are basically set roughly
to be inversely proportional to the value of each objective. Thus,

1 http://dl.acm.org
2 https://dblp.uni-trier.de/
3 https://www.imdb.com/
6

in the experiments, we turn λi in the range of [10−3, 10−2, 0.1,
, 10, 102, 102, 103

] to get optimal results. Meanwhile, we tune
1 and d2 in the range of [128, 256, 512, 1024, 2048, 4096].
pecifically, d1 and d2 are set to 4,096 and 2,048 for all datasets,
espectively. γ is set 0.8 for all datasets. λ1, λ2, λ3, λ4 and λ5 are
et to 10, 10−3, 10, 10 and 10 for all datasets, respectively. For all
aselines, we retain to the settings in the corresponding papers.

.2. Comparisons with state-of-the-art methods

Table 2 presents the metrics comparison of the above meth-
ds on ACM, DBLP and IMDB datasets. For each experiment,
e independently repeat the aforementioned methods 10 times
nd show the averages. From Table 2, we have the following
nteresting observations:

1. The proposed MVGC significantly and consistently outper-
forms classic multi-view methods, e.g., RMSC, PWMC and
SWMC. The reason should be that MVGC leverages the GCN
to learn deep nonlinear node representation. In contrast,
classic multi-view methods are linear methods.

2. Single-view GCN based methods (GAE, SDCN, ARGAE and
DAEGC) are overall inferior to the proposed MVGC. These
results verify the effectiveness of multiple views rather
than a single view. The reason may be that multi-view
methods may leverage the complementary information
embedded in multi-attribute or multi-view graph, while
single-view methods do not.

3. The proposed MVGC achieves comparable performance
than O2MAC and MAGCN. Taking the clustering results on
ACM dataset for example, it improves the O2MAC by 5.75%,
5.55%, 15.15% and 15.23% in terms of ACC, F , NMI and ARI,
1

http://dl.acm.org
https://dblp.uni-trier.de/
https://www.imdb.com/
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Fig. 3. The clustering results of MVGC w.r.t. λ2 , λ3 , λ4 and λ5 on ACM dataset.
respectively. The reason may be that MVGC explicitly takes
into account the block diagonal property, and MVGC makes
full use of the clustering labels to simultaneously supervise
the graph encoding and coefficient matrix learning, while
O2MAC and MAGCN failed to consider them.

4. We also find that the clustering performance improvement
of MVGC on DBLP and IMDB datasets was not as much as on
the ACM dataset. We find that the node attributes of DBLP
and IMDB are too sparse. Under the circumstances, when
employing the GCN to extract the node representation,
node attributes can provide very limited information, the
influence of graph structure on node representation may be
dominant. In the future, we would like to combine MVGC
with graph structure updating into a unified framework to
further improve the clustering performances.

5. We also notice that the evaluation metrics of MVGC and
all baselines are not very high when dealing with IMDB
dataset. This phenomenon is determined by the property
of the dataset. To be specific, IMDB dataset is a movie
network, the node attribute consists of a bag-of-words
represented of movie plots. The corresponding graph struc-
tures are represented by co-actor relationship, i.e., movies
are acted by the same actor, and co-director relationship,
i.e., movies are directed by the same director. Our goal
is to divide these movies into different clusters according
to movie’s genre. However, there are actually many gen-
res of movies, an actor may appear in various genres of
movies, and the same director will also direct movies of
different genres. Based on co-actor and co-director rela-
tionships, it is difficult to determine the genres of given
movies. By contrast, ACM and DBLP are paper network and
author network, respectively. When clustering ACM and
DBLP datasets, we need to determine the research area of
given papers and authors, respectively. According to the
prosperities of these two datasets, the clustering task is
relatively simple.

6. To further investigate the ability of the proposed MVGC to
deal with large-scale dataset, we conduct node clustering
experiment on HHAR dataset. Specifically, we compare the
clustering performance of the proposed MVGC with chal-
lenging multi-view GNNs based comparing methods, i.e.,
O2MAC and MAGCN. As reported in Fig. 4, our proposed
MVGC always achieves the best performance in terms of all
four metrics. In conclusion, the proposed MVGC can also be
applied for large-scale data analysis.

.3. Further evaluation

Ablation Study. We empirically analyze the effectiveness of
ifferent components in Eq. (9). To this end, Table 3 reports the
lustering performance on ACM dataset. We have the following
bservations:
7

Fig. 4. The clustering results on HHAR dataset.

Table 3
Ablation study on MVGC on ACM dataset.
Strategies ACC F1 NMI ARI

L0 + L2 64.93 59.15 52.43 44.30
L0 + L1 + L2 69.12 68.89 43.11 41.94
L0 + L1 + L2 + L3 75.80 75.49 46.82 46.80
L0 + L1 + L2 + L5 88.93 88.78 67.98 70.46
L0 + L1 + L2 + L4 + L5 94.94 94.79 81.48 85.84
L 96.17 96.08 84.38 89.17

1. Comparing the clustering results under L0 + L1 + L2
and L0 + L1 + L2 + L3, we find that when introducing
the block diagonal representation constraint, the clustering
performances are greatly improved. These results convey
that both block diagonal representation are key technical
choices for node subspace clustering.

2. Comparing the clustering results under L0 + L1 + L2 and
L0 +L1 +L2 +L5, it can be seen that the clustering results
have been improved a lot. The clustering performances
are further enhanced by the self-supervision loss L4 for
latent representation. These results demonstrate that node
representation extraction and coefficient matrix learning
benefit from self-supervision since some data with correct
clustering labels will propagate useful information.

Moreover, we vary the hyper-parameters λ2, λ3, λ4 and λ5
from 0 to 103 for the corresponding loss components and report
the result in Fig. 3. It can be seen that every component in MVGC
is helpful to improve clustering performance. Meanwhile, we can
find that the proposed MVGC is in general not very sensitive to
these hyper-parameters. Note that when λ5 > 10, the clustering
performances are degraded. This is because the value of L5 is
very large in this case, making the overall objective function
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Fig. 5. The coefficient matrix visualizations on ACM dataset.

nbalanced, which in turn affects the clustering performance.
herefore, we recommend selecting λ5 within [0.01, 10]. Fur-

thermore, from the curves in Fig. 3(b), we observe that as λ3
ncreases to large values, the performances ascend monotonously
n general, indicating the effectiveness of incorporating ℓ1,2-norm
regularization on the self-expressive coefficient matrix.

Effect of Block Diagonal Representation. To further evaluate
the advantage of the proposed block diagonal representation
constraint over other deep models, we provide a visualization for
the coefficient matrix on ACM dataset. Two cases, i.e., without
ℓ1,2-norm (ℓ1-norm constraint is adopted, which is similar to our
previous work (Xia, Wang, Gao, Zhang, & Gao, 2021)) and with
ℓ1,2-norm constraint, are selected for comparison. The visualiza-
tion results are shown in Fig. 5. It is clear that the block diagonal
learned under the block diagonal representation constraint is
clearer.

Convergence Behaviors. To verify the convergence of the
proposed MVGC, we record the objective values and clustering
performances of MVGC with iterations. Due to space limitation,
we plot partial results in Fig. 7. As observed, although the ob-
jective values do not monotonically decrease at each iteration,
the overall convergence can be reached within approximately 50
steps of iterations. Moreover, we observe that clustering results
gradually increase to a maximum and generally maintains it up
to slight variation. These observations have clearly demonstrated
that the clustering result at the last iteration guides the learning
of coefficient matrix, and the latter is used in turn to carry out
the subsequent clustering. In this way, the MVGC is trained by an
end-to-end manner, with the target at achieving better clustering
results.

Parameters Study. We conduct experiments to show the ef-
fect of graph encoder dimensions on the clustering results on
ACM dataset. Fig. 6 presents four metrics of MVGC by varying d1
and d2 from 128 to 4,096. From these figures, we observe that
four metrics obtain high value and generally maintain it up to
slight variation with changing d1 and d2 from 512 to 4,096. This
reveals that MVGC can obtain stable performance across a wide
range of d1 and d2. While, we also notice that MVGC manifests
unsatisfactory when d1 and d2 are in range [128, 512]. This is
8

Fig. 7. The objective values and clustering performances of MVGC with
iterations on ACM dataset.

because that the self-expression module is not optimized well in
such situation. To avoid this, we recommend choosing d1 and d2
rom 512 to 4,096.

. Conclusion and future works

We propose a Multi-View Graph embedding Clustering net-
ork (MVGC) to address multi-view graph-structured data clus-
ering task. To augment the node attribute, MVGC uses Euler
ransform to effectively construct a new view descriptor for
on-Euclidean structure data. By employing the block diagonal
epresentation constraint, MVGC learns a good view-consensus
oefficient matrix which has K -block diagonal. Moreover, with
he aim to achieve better clustering results, MVGC seamlessly
onnects the clustering and representation learning via self-
upervision. Extensive experiments results demonstrate the su-
eriority of MVGC. In the future, we focus on four remained
hallenges:

1. Various effective and efficient node attribute augmentation
methods.

2. Effective graph updating methods.
3. How to efficiently optimize an enforced block diagonal

conditions (Lu et al., 2019) in deep neural networks?
4. Semi-supervised learning (Wan, Pan, Yang, & Gong, 2021)

and contrastive learning (Chu, Wang, Shi, & Jiang, 2021;
Zhao, Yang, Wang, Yang, & Deng, 2021) are also the hot
spots in the field of GNNs. How to improve the proposed
method based on this is also what we study in the future.
Fig. 6. Parameter sensitivity of d1 and d2 on ACM dataset.
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