
1520-9210 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2021.3119854, IEEE
Transactions on Multimedia

IEEE TRANSACTIONS ON MULTIMEDIA 1

Zero-Shot Learning Based on Quality-Verifying
Adversarial Network

Siyang Deng, Quanxue Gao, Wei Xia, Gang Xiang, and Xinbo Gao Senior Member, IEEE

Abstract—Recently, generative adversarial network (GAN)-
based zero-shot learning methods have attracted widespread
attention. However, due to the randomness of GAN genera-
tion, most existing methods cannot well guarantee to gener-
ate sufficiently reliable features and have good generalization
ability. Targeting at these problems, we propose an effective
Quality-Verifying Adversarial Network (QVAN) that consists of
one generator and double discriminators. Adversarial learning
between the former discriminator and generator is to generate
visual features, which can be partitioned into pseudo-generated
features and reliable-generated features. The latter discriminator
is used for quality-verifying that will guide the generator to
generate more reliable features that are near the real visual
features. To avoid over-fitting and ensure intra-class diversity, we
set the threshold for each class to distinguish pseudo-generated
features and reliable-generated features. To further preserve
both compactness and discriminability of the samples, we in-
troduce the class metric constraint, which are more conducive
to classification. Moreover, we introduce `1,2-norm constraint to
fully consider the specific distribution among different classes,
thus making the generated features more discriminant. Extensive
experiments on several real-world datasets show the effectiveness
of the proposed approach, which demonstrate the advantage over
the state-of-the-art methods.

Index Terms—Zero-shot learning, Generative adversarial net-
work, Quality-verifying, Class metric constraint, `12-norm con-
straint

I. INTRODUCTION

IN real world applications, with the rapid development of
Internet and smart devices, zero-shot learning has attracted

much attention in dealing with multimedia data [48], [32],
[9]. Due to its extraordinary performance, numerous zero-
shot learning methods have been widely proposed [41], [47],
[17], [14], [53] in the past decade. Zero-shot learning is to
identify categories that have never been seen before. Given
semantic descriptions of object classes, the purpose of zero-
shot learning is to accurately recognize objects of the unseen
classes, from which no examples are available at the training

Manuscript received ********; revised ********; accepted ********.
(“current version” is the date the typeset version is posted on Xplore). This
work is supported by National Natural Science Foundation of China under
Grants 61773302 and 61372069.

Corresponding author: Quanxue Gao (e-mail:qxgao@xidian.edu.cn).
S. Deng, Q. Gao, and W. Xia are with the state key laboratory of Integrated

Services Networks, Xidian University, Xi’an 710071, China.
G. Xiang is with Beijing Aerospace Automatic Control Institute, Beijing

100854, China and with School of Automation and Electrical Engineering,
Beihang University, Beijing 100191, China.

X. Gao is with the Chongqing Key Laboratory of Image Cognition,
Chongqing University of Posts and Telecommunications, Chongqing 400065,
China.

Digital Object Identifier (inserted by IEEE).

Real visual feature

Feature 

Extract

Attribute

G

zebra

reliable-generated feature

pseudo-generated feature

zebra

zebra

Not zebra!

S
am

p
li

n
g

1D
2DNoised feature 

Redundant feature

Cause errors in classification quality-verifying

Fig. 1: Our general framework and the motivation of quality-
verifying.

stage, by associating them to the seen classes, from which
labeled examples are provided [1].

The underlying secret ensuring the success of zero-shot
learning is to find a mapping that links the semantics to the
image, and then apply the mapping to unseen classes to realize
the migration from the seen class to the unseen class. Much
effort has been made to learn the mapping. Qi et al. [29]
learned a transfer function as a bridge to propagate the labels
between text and image spaces, as a result, text and visual
data can be jointly explored. Changpinyo et al. [1] aligned
the semantic space that was derived from external information
to the model space that concerned itself with recognizing
visual features, they introduced a set of “phantom” object
classes whose coordinates lived in both the semantic space
and the model space. Qiao et al. [31] proposed an `2,1-norm
based objective function which can simultaneously suppress
the noisy signal in the text and learn a function to match the
text document and visual features. Long et al. [43] retained
one-to-one mapping strategy and synthesized visual data via
mapping attributes of classes or instances to the visual space.

Recent years, Generative Adversarial Network (GAN) [11]
has been widely used in zero-shot learning due to its promising
performance on learning a mapping from one modal to other
modal. Therefore, many zero-shot learning methods based on
GAN are widely proposed and achieve good experimental
results. They consider the features generated by the generator
to be reliable after adversarial learning or some regulariza-
tion constraints. However, due to the randomness of GAN
generation, the generated features may not reliable enough.
As shown in Fig. 1, the generated feature is relatively high
dimensional, it contains important category information, noise
and irrelevant items. When the real image sample is a zebra,
the two generated features are similar to the real visual features
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in most dimensions, thus confusing discriminator D1 into
thinking that both generated features are zebras. However, one
of them is the reliable-generated feature which corresponds
to a zebra, the other is the pseudo-generated feature which
corresponds to a black horse, the existence of pseudo features
makes the results of the model suboptimal, and will cause
errors in the classification process. Therefore, we need to
distinguish between reliable features and pseudo features in
generated features, which motivates us to conduct quality-
verifying on the generated features. If we consider all the
features generated by GAN as unreliable, it will promote
the generator to continuously produce more realistic features,
which will lead to overfitting ( small training errors and poor
generalization ability ). This is because that for the generated
features with good quality, they are realistic enough and we do
not need to deal with them, while for the generated features
with poor quality, we hope to make them more realistic
through model training. In the model, if all the generated
features are considered to be reliable, the quality of the
generated features will be not good enough, leading to errors
in the subsequent classification process. Therefore, how to
conduct quality-verifying and how to distinguish the reliable-
generated features and the unreliable-generated features are
the highlights of our paper.

In this paper, targeting at the limitation of GAN in gen-
erating features, we propose an effective Quality-Verifying
Adversarial Network (QVAN) to improve it. Our main contri-
butions are as follows. (1) We use the double discriminators for
quality-verifying as shown in Fig. 1, low dimensional features
are obtained by sampling, and pseudo-generated features can
be detected in the process of quality-verifying. Such super-
vised information will guide the generator to generate more
realistic and reliable features. Moreover, to avoid over-fitting
and ensure intra-class diversity, we set the threshold which
is the maximum reconstruction error we can accept for each
class to distinguish pseudo-generated features and reliable-
generated features. (2) To further preserve both compactness
and discriminability of the generated features, we introduce the
class metric constraint, which is more conducive to classifica-
tion. (3) We use the `12-norm constraint to fully consider the
specific distribution among different classes, so that features
of each class are only distributed in the important dimensions,
thus making the generated features more discriminant. Ex-
tensive experiments on several real-world datasets show the
effectiveness of the proposed approach, which demonstrate the
advantage over the state-of-the-art methods.

II. RELATED WORKS

A. Generative Adversarial Network

Generative Adversarial Network (GAN) [11] is a promising
deep learning model which was proposed in 2014. It consists
of two submodules which are generator and discriminator.
In the training process, the goal of generator is to generate
realistic samples to confuse the discriminator, while the goal
of discriminator is to try to distinguish the generated (fake)
samples from the real ones. Thus, generator and discriminator
constitute a dynamic “ adversarial process ”. In the end, when

the discriminator is unable to distinguish the real sample from
the fake one, the goal is achieved. That is, through adversarial
learning, the generator generates really realistic samples.

Due to the characteristics of GAN, it is widely used in many
fields. For example, in video coding, Zhu et al. [50] an intra
prediction method to improve the video coding performance,
in which GAN is adopted to intelligently remove the spatial
redundancy with the inference process. In the field of high
resolution image synthesis, Guo et al. [13] devise an auto-
embedding generative adversarial net that generates high res-
olution images by learning a latent embedding extracted from
an autoencoder. where GAN exploits the high-level photo-
structure and acts as a bridge to connect the distributions of
the input noise and real data. In the field of multi-source image
fusion, Li et al. [20] integrate multi-scale attention mechanism
into both generator and discriminator of GAN to fuse infrared
and visible images. In the field of zero-shot learning, GAN
can learn a mapping from one modal to other modal, so it can
deal with semantics and images well.

B. Zero-Shot Learning Strategy

The common scenario of zero-shot learning is to train
with the data of seen classes, such as the text descriptions(or
semantic attributes) and images of the seen class [16], [49],
[42], [35], [15], [51], and then use the trained model to identify
the unseen class data. Therefore, the key problem of zero-shot
learning is to learn a mapping that compares two different
modals of data in the same space, then the model is applied
to the unseen class to realize the migration from the seen class
to the unseen class [1].

Due to the excellent performance of GAN in image gen-
eration, people generate images through GAN, so as to make
a comparison at the level of image. However, this way of
generating images not only has high dimension, but also the
quality of the generated images is not good enough, resulting
in unsatisfactory experimental performance. As a result, Xian
et al.[41] proposed a GAN-based method that generated CNN
features from semantic instead of generating images, they
extract the CNN features from the real image as the real
visual features. Then the generated features and real visual
features are sent into the discriminator. Through the process of
adversarial learning to make the generator to generate enough
realistic features. For unseen classes during testing process, the
trained model also has the ability to generate corresponding
visual features according to the semantic of the unseen class,
so as to realize the recognition of unseen class.

Inspired by generated features in GAN, many zero-shot
learning methods based on GAN are widely proposed [16],
[49], [42], [35], [15], [4], [10], and many improvements have
been made to make the generated features more realistic and
discriminative. Qi [28] proposed a method LS-GAN, which
used a Lipschitz regularity condition on the density of real data
to regularize the loss function, so that the regularized model
can better generalize to produce new data from a reasonable
number of training examples than the classic GAN. Later on,
Qi et al. [30] proposed a novel localized generative adversarial
net to learn on the manifold of real data, this way enables local
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Fig. 2: Illustration our motivation of quality-verifying. Different
shapes represent different classes, solid points represent real features,
and hollow points represent generated features.

generators to adapt to and directly access the local geometry
without need to invert the generator in a global GAN. Zhu et
al. [52] proposed the conditional generative model which took
the noisy texts as input and hallucinated the visual features
for corresponding classes, they introduce visual pivot regular-
ization to make the generated features more discriminative.
Li et al. [21] trained a conditional Wasserstein GAN, to
improve the quality of generated features, they introduced soul
samples which were defined as the representations of each
category. Yu et al. [45] aligned the visual-semantic interactions
by formulating both the visual prototype generation and the
class semantic inference into an adversarial framework and
captured the discriminative information with an efficient multi-
modal cross-entropy loss. Huang et al.[15] used a regressor
to map each visual feature back to its corresponding class
embedding, so that the generated visual features were more
discriminative between classes. Narayan et al. [25] added
semantic embedding decoder to transform visual features into
semantic embeddings and construct circular consistency loss,
and used feedback mechanism to guide the generation of
features. Felix et al.[8] reconstructed the generated features
back into the semantic space and minimized the reconstruction
errors, so as to better establish the mapping of semantic to
visual features. And based on this idea, Ye et al.[44] not only
minimized the loss of reconstruction, but also calculated the
structural loss between the generated features and the real
visual features.

III. MOTIVATION

Since the shortcoming of GAN-based zero-shot methods is
that the generated features are not reliable enough. As shown
in Fig. 2 (a), it represents the spatial distribution of generated
features. The solid line circle represents the range where the
discriminator thinks the generated features belong to this class.
In other words, if the generated feature is within the solid
line circle of this class, it can confuse the discriminator. The
features in the dotted circle means that the generated features
are of good quality, they are reliable-generated features. While
the annular area between the dotted circle and the solid
line circle indicates that the generated features are of poor
quality, and we call them pseudo-generated features. The
existence of pseudo-generated features makes the GAN-based
ZSL methods obtain unreliable generated features. The spatial
distributions of pseudo-features are far away from the real

features, which may cause errors in the classification process.
This situation motivates us to carry out quality-verifying.

How do we determine the range of the dotted box and
the pseudo-features? We can extract the principal components
from all generated features, calculate the reconstruction errors,
and set the real features’ maximum reconstruction error as
the threshold of this class. In the low dimensional space, as
for reliable-generated features, they are near the real visual
features (The reconstruction error is less than the threshold).
On the contrary, as for pseudo-generated features, the recon-
struction errors are greater than the threshold. This information
will be fed back to the generator to produce more stable and
reliable features as shown in Fig. 2 (b).

In the process of generating features, we hope the features
of the same classes are closer and of different classes are
further apart, so we introduce the class metric constraint.
Moreover, motivated by `12-norm, which has been widely used
for feature selection [23], [18], [24], we find that it also has an
important role of characterizing class-specificity distribution in
dimension space. Therefore, we introduce `12-norm constraint
to fully consider the specific distribution among different
classes, thus making the generated features more discriminant.

IV. METHOD FRAMEWORK

Fig. 3 shows the overall architecture of QVAN. It mainly
contains 5 parts which are Generator G, Discriminant enhance-
ment module, Discriminator D1, Sampler S and Discriminator
D2, respectively. The details of each part will be described in
the following.

Notations: T ∈ Rc×l is the text features, where c represents
the number of classes in a batch of samples in the training
process, and l is the dimension of text features. X̃ ∈ Rn×d1
represents the set of features generated by the generator, of
which x̃ is one of the generated features (The lowercase letters
that correspond to the capital letters below have the similar
meaning). X ∈ Rn×d1 is the real visual features, where n
is the number of samples of a batch in the training process,
and d1 is the dimension of real visual features. Ỹ ∈ Rn×d2
is the low-dimensional features of X̃ after sampling. Noise
z ∈ Rn×d3 , where d3 is the dimension of the noise.

A. Generator G

The input of generator G is noisy text description T .
The text encoder encodes T into features, it first marks the
input text description as words, removes stop words, and then
extracts Term Frequency Inverse Document Frequency (TF-
IDF) features vector, which is also a pre-processing process
for the input data. Then the encoded text passes through a
fully connected layer to reduce the dimension. and the fully
connected layer also contributes a lot to noise suppression.
Next, we concatenate the text feature that was output in the
previous step with the random noise z, where z obeys Gaussian
distribution. Adding noise increases the variety of generator
generation to the extent that the generator does not produce
the same result every time. In this more diverse case, it is easier
to find more appropriate generator parameters in iterative
updates. Finally, we feed concatenated noisy features into the
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Fig. 3: Illustration of QVAN’s overall architecture: The Generator G is used to generate realistic visual feature, and the former Discriminator
D1 is used to distinguish the generated features from the real visual features and to classify the generated features into the correct class.
Before classification in Discriminator D1, class metric constraint is used to make the features of the same class closer and of different classes
more discriminative. The Sampler S and the later Discriminator D2 is used for quality-verifying.

two fully connected layers, and the activation functions of
the two fully connected layers are Leaky ReLU and Tanh
respectively. The loss of the generator is defined as:

L(G) = −Ez∼pz [D1(x̃)] + Lcls(x̃) − Ez∼pz [D2(ỹpse)]
(1)

where x̃ = Gθ(T, z) is the generated feature based on the input
text T and noise z, θ is the parameter of the generator. Ỹ is the
low-dimensional features of X̃ after sampling, ỹpse represents
the samples of pseudo features in Ỹ . ỹpse is obtained by
traversing the samples in Ỹ , if the reconstruction error of
a sample in Ỹ is greater than the threshold value of its
class, then the sample is a pseudo feature. The first term is
Wasserstein loss from discriminator D1. The second term Lcls
is the additional classification loss, it is the cross entropy loss
between the classification result of the classifier in D1 and the
real class labels. The classifier is contained in the structure of
discriminator D1. The last term is also the Wasserstein loss
which comes from discriminator D2.

B. Discriminant Enhancement Module

The discriminant enhancement module mainly contains
class metric constraint and `12-norm constraint.

1) Class Metric Constraint: The class metric constraint
contains class central constraint and intra-class constraint, it is
introduced to make the features of the same class closer and
of different classes farther. The specific process is shown in
Fig. 4.

Class Central Constraint: In order to encourage the
generator to generate features that match real visual features,
we propose class central constraint to facilitate this process.
Xall ∈ Rnall×d1 is the all real visual features in the dataset,
where nall is the number of samples and d1 is the dimension.
The specific implementation process is in Fig. 4: Since the
real visual features are known from the dataset, we divide
all of them into classes and calculate the class center for each

class, the class center is calculated by summing and averaging
samples of the same class. This process is equivalent to pre-
processing in advance, taking the calculated class center(the
black point) as the input of the model. Therefore, the class
centers of the real features are fixed and reliable. Then during
the training process, according to the samples sent by each
batch, we calculate the generated features’ class center of each
class (the red point). For the class centers of the generated
features and the real features, we hope that the class centers
of the same class are closer and of different classes are further
in Fig. 4 (b). Finally, we define class central constraint as:

Le = 1
C

C∑
c=1

(||Ex̃c∼pcg [x̃c]− Exc∼pcdata
[xc]||2

−
C∑

j=1,j 6=c
||Ex̃c∼pcg [x̃c]− Exj∼pjdata

[xj ]||2)
(2)

where C is the number of seen classes, x̃c is the generated
feature of class c which obeys conditional distribution pgc . xc is
the real feature of class c which obeys conditional distribution
pcdata . When calculating the class centers, we approximate
it as Exc∼pcdata

[xc] = 1
Nc

∑Nc

i=1 x
i
c, where Nc is the num-

ber of real features of class c. Similarly, Exj∼pjdata
[xj ] =

1
Nj

∑Nj

i=1 x
i
j . As for generated feature, it is approximated by

averaging the generated high-dimensional vectors for class c,
Ex̃c∼pcg [x̃c] = 1

Ns
c

∑Ns
c

i=1 x̃
i
c, where x̃ic = G(Tc, zi) is the i-th

generated feature of class c, and Ns
c is the number of generated

features of class c.
Intra-Class Constraint: In Fig. 4 (b), the class center

constraint only makes the class centers of the same classes
closer and of the different classes farther, it does not consider
the compactness of the distribution within the same class.
Therefore, we introduce the intra-class constraint which is
defined as:

Lin =
1

C

C∑
c=1

Nc∑
i=1

(||x̃ic − Exc∼pcdata
[xc]||2) (3)
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where the definitions of x̃ic and Exc∼pcdata
[xc] have been

mentioned in Eq. (2). Through intra-class constraint in Fig.
4 (c), generated features of the same class are clustered near
the center of its class and are closely distributed.

Therefore, class metric constraint is the sum of class central
constraint and intra-class constraint.

Lclass = Le + Lin (4)

2) `12-norm Constraint: The generated feature x̃ by gener-
ator may have a large amount of redundant information, which
may result some features to be incorrectly classified. In order
to make the features of different classes more discriminant
in the distribution of feature space, we introduce the `12-
norm constraint on the generated feature x̃. The generated
feature x̃ by generator may have a large amount of redundant
information, which results some features to be incorrectly clas-
sified. To make the learned representation more discriminative,
we introduce the `12-norm constraint term on the generated
representation feature matrix. The loss function can be shown
as:

L12 = ||X̃||21,2+||X̃T ||21,2 (5)

where X̃ is the generated feature, and X̃T is the transpose
of X̃ . The dimension of X̃ is the same as that of the real
feature X , X̃ ∈ Rn×d1 , where n is the number of samples
of a batch in the training process, and d1 is the dimension of
real visual features. ||X̃||1,2 is to want the rows to be sparse,
that is, the samples are distributed only in their important
feature dimensions, and are zero or small value in the other
dimensions. However, ||X̃||1,2 can only be sparse in rows. In
order to make classes more discriminant, we want the columns
to be sparse as well, so on this basis, we add ||X̃T ||1,2.

The `12-norm is defined as follows:

||A||1,2 =

√√√√√ k∑
j=1

(
d∑
i=1

|aij |)
2

(6)

where A denotes a matrix, aij is the j-th element in the i-th
row, d represents the number of rows and k represents the
number of columns.

By minimizing Eq.(5), for a fixed class such as the j-th
class, different elements in each projected data compete with

each other, only a few elements corresponding to the j-th
class will survive (nonzero) [23]. Thus, the learned generated
features well preserve class-specificity distribution.

C. Discriminator D1

The input of D1 is the real visual feature X and the
generated feature X̃ . Both X and X̃ first pass through a
full connection layer with ReLU activator function, and then
through two branches of the discriminator: (i) one is the full
connection layer for binary classifiers to distinguish between
real (real visual feature x) and fake (generated feature x̃)
input features. (ii) The other is full connection layer for n-
way classifiers which is used to classify generated features
into correct classes, this is also the classifier that we use to
predict the features’ labels. The loss of discriminator D1 is:

L(D1) = Ez∼pz [D1(x̃)]− Ex∼pdata
[D1(x)]

+ λLGP + 1
2 (Lcls(x̃) + Lcls(x))

(7)

where the first two terms approximate Wasserstein distance of
the distribution of real features and generated features. The
third term is the gradient penalty, which is used to avoid the
pathological behavior in WGAN. In previous WGAN, the use
of weight clipping in WGAN to enforce a Lipschitz constraint
on the critic can lead to the problems of generating poor
samples or fail to converge. Therefore, we use the LGP to
clipping eights: penalize the norm of gradient of the critic
with respect to its input. This method of Lipschitz constraint
can avoid the bad situations mentioned above, and it has been
proved in the reference [12]. LGP = (||∇x̂D1(x̂)||2 − 1)2,
where x̂ is the linear interpolation of the real feature x and
the generated feature x̃. For more information about LGP can
refer to reference [12]. The last two terms are classification
losses of real feature x and generated features x̃ corresponding
to class labels.

D. Sampler S

In the Sampler S, We use one of the most classical method
which is Principal Component Analysis (PCA), and people
also often use the idea of PCA to sample, such as Zhang et al.
[46] use PCA to project samples into subspaces for learning.
There are three main steps: we first calculate projection matrix
W for each class, then calculate low-dimensional features Ỹ
and Y by W , finally we calculate the reconstruction threshold
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for each class from low-dimensional features Y . The specific
steps are as follows:

Calculate projection matrix: The training sample consists
of two parts, one is the real visual feature, the other is the
generated feature. We make full use of prior knowledge,
divide the real visual features X ∈ Rn×d1 into c classes,
where n is the total number of visual feature X , and d1 is
the dimension of the features. We use PCA to calculate the
projection matrix W = {W1,W2, · · · ,Wc} of each class. For
the sample Xi ∈ Rni×d1 of class i, each row is a sample,
ni is the number of samples Xi, and d1 is the dimension.
The specific process is as follows: (1) Calculate the mean of
each of these rows in Xi, and then subtract the mean from
each of these rows, the samples at this time are represented
by X ′i . (2) Calculate the covariance matrix of X ′i . (3) Find the
eigenvalue and eigenvector of the covariance matrix. (4) Sort
the eigenvalues in order from large to small, select the largest
d2 of them, and then use the corresponding d2 eigenvectors as
column vectors to form the eigenvector matrix Wi ∈ Rd1×d2 .

For the i-th class, the projection matrix Wi is a unique
property of this class. When using PCA to reduce dimension,
we choose an appropriate dimension d2 with a contribution
rate between 0.8 and 0.85 for each class, so as to reduce the
complexity of subsequent processing. Then Wi ∈ Rd1×d2 ,
for sample Xi ∈ Rni×d1 of the i-th class, Yi = XiWi ∈
Rni×d2 is the feature after dimension reduction, where ni is
the number of the features of the i-th class.

Calculate low dimensional features: Through the above
steps, we have calculated the projection matrix W of each
class through the real visual features. During the training, the
generated features X̃ and the real visual features X are paired
and share the same label. We reduce the dimension of X̃
and X by the corresponding class of W , the features after
dimension reduction are Ỹ and Y . Specifically, for sample xij
in X , it is the i-th sample of class j. Its corresponding low
dimensional feature is yij = xijWj .

Calculate reconstruction threshold: From PCA, we get
Ỹ and Y . We calculate the reconstruction error through
reconstructing the low-dimensional visual features Y back
to the high-dimensional features X . Assume that there are
m classes of samples sent in a batch (n ≤ c), where
c is the total number of classes in the training sample.
For the features of the j-th class, there are Ns

j features

Algorithm 1: Training procedure of QVAN
Input: The images’ real visual features X , matching texts T , corre-
sponding labels, the random noise z, the batch size n, the maximal
loops N , the iteration number of discriminators is nd = 5, hyper-
parameter λ = 10, the visual pivots {x̄c}Cc=1, the projection matrix
W and reconstruction threshold err calculated by PCA for each class.
for iter = 1, 2, · · · , N do

for t = 1, 2, · · · , nd do
1: x̃← Gθ(T, z)
2: Compute the loss L(D1) of discriminator using Eq. (7)
3: Update the parameter w1 of D1

4: Compute ỹ and y in low-dimensional space according to
corresponding W of each class.

5: For each ỹ, calculate its reconstruction error and compared
with the threshold of its class, then divided into reliable
feature yrel or pseudo feature ypse.

6: Compute the loss L(D2) of discriminator using Eq. (8)
7: Update the parameter w2 of D2

end for
Compute the loss Lclass of class central constraint using Eq. (4)
Compute the loss L12 of `12-norm Constraint using Eq. (5)
x̃← Gθ(T, z)
Compute the loss L(G) of generator G using Eq. (1)
Update the parameter θ of the generator G using L(G) +Lclass
+L12

end for

{x1j , x2j , · · · , x
Ns

j

j }. We calculate the reconstruction error for
each feature separately. For feature xij , the reconstruction error
is errij = ||xij − (xijWjW

T
j + x̄ij)||2, where (xijWjW

T
j + x̄ij)

is the reconstructed high-dimensional feature and x̄ij is the
mean of the xij , and the reason why adding x̄ij is because
we’re subtracting the mean when PCA reduced dimensions.
For the j-th class, the reconstruction threshold is errj =

max
1≤i≤Ns

j

{errij}. This threshold represents the maximum error

we can accept when reconstructing the real feature of the
j-th class. As shown in Fig. 5, the blue points are the real
visual features of the j-th class. We determined the projection
direction Wj of this class (the blue line with arrows) based on
these blue points. When the blue point is reconstructed back,
xij is the farthest point from the projection direction, and the
distance represented by the red line of xij is the reconstruction
threshold of this class. The blue points are all real visual
features, therefore, the threshold is the maximum range of the
reconstruction error that we can accept. We use the threshold
to distinguish reliable-generated features and pseudo-generated
feature. In Fig. 5, The reconstruction error of x̃nj is less than
the threshold, it is considered to be reliable-generated feature,
and the reconstruction error of x̃mj is greater than the threshold,
it is considered to be pseudo-generated feature.

It is important to calculate the respective reconstruction
errors for the different classes of samples, as this is also a
property specific to each class. As shown in TABLE I, we
visualize the reconstruction thresholds of the first 40 classes
of samples on the CUB dataset. As can be seen from TABLE I,
reconstruction thresholds for different classes of samples have
great differences, which also proves the significance of setting
reconstruction thresholds according to different classes.

In addition to the PCA, we have also tried other sam-
pling methods like auto-encoder. We have tried to make no
distinction between classes, using an autoencoder to encode
generated and real features into the low-dimensional space.
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However, in this way, we can’t calculate the reconstruction
threshold for each class, so we can’t distinguish the reliable
features and pseudo features in the generated features. There-
fore, the effect is not as good as PCA. In order to calculate
the reconstruction threshold for each class of samples, we have
tried to use an autoencoder for each class of samples, but there
are usually many classes of samples. This method will greatly
increase the complexity of the network and is not feasible in
practice. Therefore, we finally choose the PCA method, which
can pre-process the real features in advance, so as to calculate
the reconstruction threshold of each class of samples, without
participating in the training process of the network, and also
reduce the complexity of the network.

E. Discriminator D2

The structure of the discriminator D2 is roughly the same as
that of D1, except that the branch of the classifier is removed
from D1, and D2 only contains the function of distinguishing
true and fake features. The inputs of discriminator D2 are
generated features Ỹ and real visual features Y , which are
low dimensional features corresponding to X̃ and X . The
function of discriminator D2 is to distinguish between Ỹ and
Y . It consists of a full connection layer with ReLU activation
function and a full connection layer for binary classifiers. As
shown in Fig. 5, for the reliable-generated features, to avoid
over-fitting and ensure intra-class diversity, we consider it to
be real features, and for the pseudo-generated features, we
consider them to be fake features, thus guiding the generator to
produce more realistic and reliable features. The loss function
of discriminator D2 is the Wasserstein distance loss, which
can be defined as:

L(D2) = −Ex∼pdata
[D2(y)]− Ex∼pdata

[D2(ỹrel)]
+ Ez∼pz [D2(ỹpse)] + λLGP

(8)

where ỹrel is the reliable features in Ỹ , and ỹpse is the pseudo
features in Ỹ , and Ỹrel ∪ Ỹpse = Ỹ , Ỹrel ∩ Ỹpse = φ. By
feeding back such supervision to the front, the generator is
then enforced to maximize the discriminator loss, leading to
better representations and classification results.

V. EXPERIMENTS

A. Datasets

We adopt two types of zero-shot learning datasets, both of
which contain samples of two modals of semantics and visual
features. However, these two types of databases have different
types of semantic representations, one is text description, the
other is semantic attributes.

I) Datasets with text descriptions and images
CUB(Caltech UCSD Birds-2011) [38] contains 200 cate-

gories of bird species with a total of 11,788 images. Each
species is associated with an article from Wikipedia [7] and
organized according to scientific classification (order, family,
genus, species). The samples in the CUB dataset consists of
two parts, one is text description of the bird and the other is
real visual features extracted from the images. As for text
description, Term Frequency Inverse Document Frequency

(TF-IDF) of word frequency [34] is used to represent, and the
dimension of TF-IDF features for CUB is 7551.The dimension
of visual features for CUB is 3584. We split the dataset using
two different split settings [7], named Super Category-Shared
(SCS) and Super-Category-Exclusive (SCE), in term of how
close the seen classes are related to the unseen classes. In
traditional zero-shot learning, seen classes are used for training
and unseen classes are used for testing. For each unseen class
in SCS, there exists one or more seen classes that belong
to the same parent class. For example, both Coopers Hawk
in the training set and Harriss Hawk in the testing set are
under the parent category Hawks. On the contrary, in SCE, the
parent categories of unseen classes are exclusive to those of
the seen classes. Therefore, SCE is much harder than SCS as
the relevance between seen and unseen classes is minimized.
We follow both split settings to evaluate the capability of our
approach. We divide CUB dataset into CUB-SCS, CUB-SCE.
In CUB-SCS, there are 200 classes, 150 classes for training
and 50 classes for testing. In CUB-SCE, there are 160 classes
for training and 40 classes for testing.

NAB(North America Birds)[37] is a larger dataset of birds
with 1011 classes and 48,562 images. The taxonomy for this
dataset contains 1011 nodes, and the categories cover the most
common North American birds. As for textual representation
in NAB, The dimension of TF-IDF features is 13217, and the
dimension of visual features is 3072. We use the split settings
mentioned above to divide the NAB dataset into NAB-SCS,
NAB-SCE. In NAB-SCS and NAB-SCE, there are 404 classes,
323 classes for training and 81 classes for testing.

II) Datasets with semantic attributes and images
CUB(Caltech UCSD Birds) [38] is a medium-size, fine-

grained dataset with 312 attributes, containing 11,788 bird
pictures and 200 categories, 150 classes for training and 50
classes for testing.

AWA1(Animals with Attributes 1)[19] is a medium-size,
coarse-grained dataset with 85 attributes, containing 30,475
animal images in 50 categories, with 40 classes for training
and 10 classes for testing.

AWA2(Animals with Attributes 2)[40]has the same 50 an-
imal categories as AWA1, but all of its 37,332 images are
obtained from public websites. The attributes and of AwA2
are defined in the same way as AwA1.

SUN(SUN Attribute)[27] is a medium-size, coarse-grained
scene data set with 102 attributes, containing 14,340 images
and 717 scene categories, of which 645 classes are used for
training and 72 classes are used for testing.

FLO(Oxford Flowers)[26]consists of 8,189 images which
comes from 102 flower categories. Each class consists of
between 40 and 258 images. The images have large scale,
pose and light variations.

B. Superiority of Our Method
We conduct experiments on both types of datasets to demon-

strate the superiority of our method. TABLE II and TABLE
III show the performances of all of the comparison methods
and our method.

The datasets in II contain text descriptions and images,
TABLE II reports that our method has a better performance
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TABLE I: In the CUB dataset, these are the reconstruction thresholds for the first 40 classes of samples.

Class 1 2 3 4 5 6 7 8 9 10

Threshold 473.16 529.30 616.47 492.14 536.58 571.68 540.71 514.00 437.69 856.08

Class 11 12 13 14 15 16 17 18 19 20

Threshold 450.25 627.89 525.04 603.51 627.95 727.74 687.07 796.45 529.08 648.81

Class 21 22 23 24 25 26 27 28 29 30

Threshold 629.30 568.79 568.79 568.79 419.02 594.62 356.61 604.04 353.19 329.01

Class 31 32 33 34 35 36 37 38 39 40

Threshold 483.92 514.25 465.53 515.26 648.15 932.79 886.62 462.01 403.38 401.06
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(b) QVAN

Fig. 6: Visualization of the generated features on CUB database. Each
row is a sample, there are 3 classes, 5 samples per class.

TABLE II: Top-1 accuracy (%) on CUB and NAB datasets with two
split settings, the datasets are the types that contain text descriptions
and images.

Datasets CUB NAB

Methods SCS SCE SCS SCE

WACZSL [6] 27.0 5.0 - -
ESZSL [33] 28.5 7.4 24.3 6.3

SynC [1] 28.2 8.7 18.3 3.9
ZSLNS [31] 29.1 7.3 24.5 6.8

WACPVC [5] 33.4 7.6 11.5 6.2
ZSLPP [7] 37.3 9.7 30.3 8.1

f-CLSWGAN [41] 42.6 9.4 - -
GAZSL [52] 43.7 10.3 35.6 8.6

QVAN 45.82 14.84 37.52 9.96
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network
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Fig. 7: Visualization of the generated features in the training process
on CUB database, there are 150 classes, different colors represent
different classes.

TABLE III: Top-1 accuracy (%) on different datasets, the datasets
are the types that contain semantic attributes and images.

Methods CUB AWA1 AWA2 SUN FLO

ESZSL [33] 53.9 58.2 58.6 54.5 51.0
SynC [1] 55.6 54.0 46.6 56.3 -

f-CLSWGAN [41] 57.3 68.2 - 60.8 67.2
DEM [22] 51.7 68.4 67.2 61.9 -

SP-AEN [3] 55.4 - 58.5 59.2 -
SR-GAN [44] 55.4 71.8 - 62.3 -
LisGAN [21] 58.8 70.6 - 61.7 69.6
GAZSL [52] 60.8 73.2 70.3 66.5 65.6
GMGN [36] 64.6 73.9 - 64.1 -

EBP [45] 72.4 74.4 73.4 - 83.7
SDGN [39] 74.9 - - 68.4 81.8

QVAN 75.5 74.8 74.2 68.8 84.0

on both datasets. Compared with the GAZSL method, which
has the current best classification performance, our method
achieves 4.8%, 44.1% improvement on CUB with SCS and
SCE splitting, and outperforms 5.3% and 15.8% on NAB with
SCS and SCE splitting. For the SCE database lacking super
category sharing, our method has a much higher accuracy
than other methods, indicating that our method has greater
advantages on the databases which are difficult to categorize.

The datasets in III contain semantic attributes and images,
TABLE III reports that our method has a better performance
on all datasets, which demonstrates the effectiveness of the
proposed method.

TABLE IV: Effects of different components on zero-shot classifica-
tion accuracy (%) on CUB and NAB datasets with SCS and SCE
split setting

Datasets CUB NAB

Ablation Study SCS SCE SCS SCE

QVAN Without L12 43.20 13.97 35.82 9.01
QVAN Without Lclass 24.85 6.76 26.07 5.241

QVAN Without S and D2 41.97 9.82 34.35 8.21
QVAN 45.82 14.84 37.52 9.96

C. Ablation Study

In this section, we study the effectiveness of our three
contributions which are `12-norm constraint, class metric con-
straint and quality-verifying network. Therefore, the ablation
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experiments are carried out in this section to illustrate our
contributions from the final classification accuracy and the
feature visualization in the training process.

1) Classification Accuracy: TABLE IV shows the classifi-
cation accuracy of different situations. In TABLE IV, Without
L12 is that our method only removes `12-norm constraint,
Without Lclass means that our method only removes class
metric constraint, and Without S and D2 is that our method
only removes the quality-verifying network. From TABLE
IV, we can see that our contributions play important roles
in the model, which can improve the classification accuracy
of the model, especially on the databases which are difficult
to categorize.

2) Feature Visualization: TABLE IV shows the role of our
three contributions from the perspective of the final classifica-
tion accuracy. Next, we visualize the features to further study
the effectiveness of our three contributions. First, we study the
role of the `12-norm constraint by visualizing features from the
perspective of the feature space. Then, we use t-SNE method
to visualize the overall distribution of features to study the
role of class metric constraint and quality-verifying network.

Fig. 6 is the visualization of the generated features in
the feature space on CUB-SCS database. Each row is a
sample, there are 15 samples of 3 classes, 5 samples per
class. Compared with Fig. 6 (a) and (b), when there is no
`12-norm constraint, the distribution of features is a little
chaotic. Through the `12-norm constraint, features are only
distributed in some important dimensions, and the value in
other dimensions is 0 or very small. This makes the features
more discriminative among different classes, and thus more
conducive to classification. In the meanwhile, we can see from
Fig. 6 (a) and (b), `12-norm is a relatively loose constraint,
which does not force the distribution of samples. Therefore,
it does not limit the generator, which proves the reasonability
of the `12-norm constraint.

Fig. 7 is the overall distribution of features on CUB-SCS
database. There are 150 classes, each point is a sample,
different colors represent different classes. From Fig. 7 (a),
we can see that when there is no class metric constraint
and quality-verifying network, the generated features are very
messy. In Fig. 7 (b), when these two contributions are included
in our model, the features generated in the training process
can well simulate the distribution of real visual features. The
distributions of the same class are compact and of the different
classes are far apart.

Fig. 7 is to visualize the feature distribution from a macro
perspective. In order to observe the effect of class metric
constraint and quality-verifying network more clearly, we
randomly selected 4 classes for specific research in Fig. 8.

In Fig. 8, the cross points are real visual features, their
distribution can always be classified. As for generated features,
Fig.8 (a) is the model without class metric constraint and
quality-verifying network, the generated features are very
messy. Compare Fig. 8 (b) and Fig. 8 (d), we can see that
the class metric constraint can make the distributions of the
same class closer and of different classes more discriminative.
Compare Fig. 8 (c) and Fig. 8 (d), we can conclude that the
quality-verifying network also plays a key role in the model.

TABLE V: AUSUC scores on CUB and NAB datasets with two split
settings

Datasets CUB NAB

Methods SCS SCE SCS SCE

ESZSL 0.185 0.045 0.092 0.029
ZSLNS 0.147 0.044 0.093 0.023

WACPVC 0.225 0.054 0.007 0.023
SynC 0.131 0.040 0.027 0.008

ZSLPP 0.304 0.061 0.126 0.035
GAZSL 0.354 0.087 0.204 0.058
QVAN 0.396 0.122 0.242 0.065

From quality-verifying network, the generated features are of
better quality and closer to the real visual features.

D. Extend to Generalized zero-shot learning

In conventional zero-shot learning, seen classes are used
for training and unseen classes are used for testing. However,
as the seen classes are often the most common objects, it is
unrealistic to assume that we will never encounter them during
the test phase[2]. Therefore, we can extend our method to
the Generalized Zero-Shot Learning(GZSL). In this section,
we first introduce the evaluation metric and then compare our
method with the others.

1) Evaluation Metric: Chao et al. [2] proposed a general
metric for GZSL that involves classifying images of both
seen classes S and unseen classes U into T=S ∪ U . The
accuracies are denoted as AS→T and AU→T respectively.
They introduced a balancing parameter γ to draw Seen-Unseen
accuracy Curve(SUC) and use Area Under SUC to measure
the general capability of methods for ZSL. The higher the
area is, the better an algorithm is able to balance AS→T and
AU→T .

2) Superiority of Our Method in GZSL: As can be seen
from TABLE V, when extended to the GZSL, our model is still
superior to the existing algorithm. Compared with the GAZSL
method, which has the current best classification performance,
our method achieves 11.9%, 40.2% improvement on CUB with
SCS and SCE splitting, and outperforms 18.6% and 12.1% on
NAB with SCS and SCE splitting.

VI. DISCUSSION

A. Different Reconstruction Threshold Settings

In our model, the threshold of reconstruction error is deter-
mined by the farthest point of the real visual features. Here,
we investigate the effect of different reconstruction threshold
setting methods on the final performance. Therefore, the mean
value of the reconstruction errors of real visual features is
studied as the reconstruction threshold. We conducted ex-
periments on CUB and NAB datasets, and the experimental
results are shown in TABLE VI. QVAN-Threshold-max is the
reconstruction threshold used in the method proposed in our
paper, QVAN-Threshold-mean represents that we use the mean
value of the reconstruction errors of real visual features. As
can be seen from the experimental results in the TABLE VI,
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Fig. 8: Visualization of the generated features and real visual features in the training process on CUB dataset, there are randomly selected
4 classes, Different colors represent different classes. The solid points of the circle represent generated features, and cross points represent
real visual features.

QVAN-Threshold-max has a better effect. This may be because
the furthest point of the real samples, as the reconstruction
threshold, is also the maximum error range that we can accept,
so it is more reasonable.

TABLE VI: Study on different reconstruction threshold setting meth-
ods on CUB and NAB datasets.

Datasets CUB NAB

Different Thresholds SCS SCE SCS SCE

QVAN-Threshold-mean 45.65 14.52 37.20 9.15
QVAN-Threshold-max 45.82 14.84 37.52 9.96

B. Different Quality-Verifying Methods

In our model, in the process of quality-verifying, we project
the high-dimensional features into the low-dimensional space,
and take the maximum reconstruction error of the real features
as the threshold value to judge the quality of the generated
features. Here, we study different quality-verifying method,
that is we only do quality-verifying in the high-dimensional
space, we directly compare the generated features with the
real features, then measure the difference between the two
by the `1-norm. In each class, we take the maximum `1-
norm difference between the real features as a threshold,
indicating the maximum difference we can accept within the
real range. If the difference between the generated feature and
the corresponding real feature is greater than the threshold
value, it indicates that the generated feature is of good quality,
otherwise it is poor. This method is called QVAN-only high
dim, and the experimental results are shown in TABLE VII.

TABLE VII: Study the different quality-verifying methods. The
values in the table represent the final accuracy of the experiments.

Datasets CUB NAB

Different Quality-Verifying SCS SCE SCS SCE

QVAN-only high dim 44.10 10.91 36.20 9.05
QVAN 45.82 14.84 37.52 9.96

As can be seen from the results in the TABLE VII, the
results of quality-verifying only in high dimensional space are

not as good as our method. This may be because the higher
dimensional features contain a lot of noise and irrelevant
terms, which will affect the results.

C. Different Sampling Dimensions

In our model, when using PCA to sample, we choose an
appropriate dimension with a contribution rate between 0.8
and 0.85 for each class, so as to reduce the complexity of
subsequent processing. Here, we study the different dimen-
sions in the quality-verifying stage. The experimental results
are shown in TABLE VIII, QVAN-rate 0.60-0.65 indicates that
we choose the dimension with the contribution rate between
0.6 and 0.65, the same as below.

As can be seen from the TABLE VIII, with the increase of
the contribution rate in the process of PCA dimension reduc-
tion, the overall accuracy rate presents a general upward trend.
However, when the contribution rate is too high (greater than
0.9), it cannot play a good role in sampling. The contribution
rates of 0.8 to 0.85 and 0.85 to 0.9 achieve good experimental
results, which indicate that when the contribution rates are
within this range, the low-dimensional features can not only
remove irrelevant information and noise direction, but also
preserve the structural information of features well.

TABLE VIII: Study the different quality-verifying methods. The
values in the table represent the final accuracy of the experiments.

Datasets CUB NAB

Different Contribution Rates SCS SCE SCS SCE

QVAN-rate 0.60-0.65 43.72 12.92 36.25 9.16
QVAN-rate 0.65-0.70 44.60 12.82 36.30 9.15
QVAN-rate 0.70-0.75 44.53 12.72 36.54 9.08
QVAN-rate 0.75-0.80 45.73 13.51 36.30 9.15
QVAN-rate 0.80-0.85 45.82 14.84 37.52 9.96
QVAN-rate 0.85-0.90 45.81 14.82 37.62 9.85
QVAN-rate 0.90-0.95 45.52 14.52 37.10 9.25

D. Discriminant performance of the model

In order to study the performance of the discriminator with
the number of iterations, we conduct experiments on the CUB-
SCS dataset. Fig. 9 shows the change of model accuracy as
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Fig. 9: On CUB-SCS dataset, the change curve of accuracy with the
number of iterations.

the number of iterations increases. It can be seen that the
classification accuracy increased rapidly at the beginning, and
then gradually stabilized. This shows that with the increase
of the number of iterations, the discriminant ability gradually
increases, and then gradually becomes stable.

VII. CONCLUSIONS

In this paper, we present an effective quality-verifying
adversarial network (QVAN) consisting of a generator and
two discriminators, through which we can obtain reliable
and stable generated features. In the meanwhile, we avoid
overfitting and ensure intra-class diversity through setting the
reconstruction threshold for each class. In order to consider
both compactness and discriminability of generated features,
we introduce the class metric constraint. And we use the `12-
norm to fully consider the specific distribution among different
classes, thus making the generated features more discriminant.
Extensive experiments on several real-world datasets show the
effectiveness of proposed approach, which demonstrate the
advantage over the state-of-the-art methods, especially on the
databases which are difficult to categorize. In the future, the
idea of quality-verifying can also be applied to other GAN-
based classification and clustering work.
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