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Abstract—Despite the promising preliminary results, tensor-
singular value decomposition (t-SVD)-based multiview subspace
is incapable of dealing with real problems, such as noise and illu-
mination changes. The major reason is that tensor-nuclear norm
minimization (TNNM) used in t-SVD regularizes each singular
value equally, which does not make sense in matrix comple-
tion and coefficient matrix learning. In this case, the singular
values represent different perspectives and should be treated
differently. To well exploit the significant difference between sin-
gular values, we study the weighted tensor Schatten p-norm
based on t-SVD and develop an efficient algorithm to solve
the weighted tensor Schatten p-norm minimization (WTSNM)
problem. After that, applying WTSNM to learn the coefficient
matrix in multiview subspace clustering, we present a novel multi-
view clustering method by integrating coefficient matrix learning
and spectral clustering into a unified framework. The learned
coefficient matrix well exploits both the cluster structure and
high-order information embedded in multiview views. The exten-
sive experiments indicate the efficiency of our method in six
metrics.

Index Terms—Multiview clustering, spectral clustering, tensor-
singular value decomposition (t-SVD), weighted nuclear norm.

I. INTRODUCTION

MULTIVIEW data are ubiquitous in machine learn-
ing and artificial intelligence, and help provide com-

plementary information embedded in multiviews for multi-
view clustering. Multiview clustering aims to separate mul-
tiview data into several meaningful groups and has become
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an active topic in artificial intelligence and data analy-
sis [5], [16], [22], [25], [28]. Yang and Wang [39] provided
a comprehensive review of multiview clustering. We, herein,
center on multiview subspace clustering (MVSC) that is one
of the most representative clustering techniques.

Subspace clustering aims to learn a robust coefficient matrix
or affinity matrix, which is usually used for spectral clus-
tering. Low-rank representation (LRR) well characterizes the
relationship between data and has become one of the most
representative techniques of learning the affinity matrix in
subspace clustering [12]. For clustering of imaging data, Wu
and Bajwa [33] considered imaging data as lateral slices of
the tensor and proposed the structure-constrained low-rank
submodule clustering (SCLRSmC) method, which models
them as lying near a union of free submodules (UoFS) [1].
For multiview clustering, Zhang et al. [43] viewed affin-
ity matrices, which are learned by different views via the
self-representation technique, as lateral slices of tensor, and
presented the low-rank tensor-constrained multiview subspace
clustering (LT-MSC) method. LT-MSC captures the high-order
information underlying multiview data by minimizing the
nuclear norm of the tensor-unfolding matrix. However, the
nuclear norm of the tensor-unfolding matrix is not a tight
convex relaxation of both the Tucker rank and �1-norm [32],
[37], [47]. To handle this problem, Lu et al. [17] proposed
the tensor-singular value decomposition (t-SVD)-based ten-
sor nuclear norm. This new norm is a convex relaxation of
�1-norm. Motivated by this, Xie et al. [37] proposed a t-SVD-
based multiview subspace clustering (t-SVD-MSC), method
which well-characterizes high-order information embedded in
multiview data.

Although the new tensor nuclear norm minimization
(TNNM) achieves impressive results for multiview
clustering, existing TNNM still exists the following
shortcomings.

1) It neglects the significant difference between all sin-
gular values of a matrix due to the fact that tensor
nuclear norm minimization leverages the same param-
eter to shrink all singular values. In real applications,
there has a significant difference between nonsingular
values of a matrix, and the first several largest sin-
gular values usually characterize the salient structure
information embedded in the matrix. This significant
difference, which is called prior information, is very
important for image denoising, matrix completion, and
so on, but similar investigations for multiview clustering
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have been found lacking so far, which is one of the moti-
vations behind this work. Thus, to well exploit the salient
structure information embedded in affinity matrices, we
should make the larger singular values shrink less, while
t-SVD-MSC does not.

2) TPSSV (tensor partial sum of singular values)
minimization [44], which is an extensor of TNNM, only
shrinks the last several smaller singular values. Doing
so implies that the small singular values characterize
the unimportant structure information in data, while
the larger singular values do not carry the information,
which has nothing to do with the content of data.
However, this assumption is very strict and does not
makes sense in real applications. For example, given an
image with large illumination variation in contents, the
first three largest singular values contain somewhat illu-
mination information [2] that has nothing to do with the
content of the image.

3) t-SVD-MSC executes the coefficient representation and
spectral clustering in two separated steps, which limits
its performance.

To well exploit both the salient structure information and
high-order information embedded in multiview data, inspired
by the t-SVD-based nuclear norm, we present the t-SVD-
based weighted tensor Schatten p-norm (WTSN) and study
the minimization problem of WTSN (WTSNM). After that,
we apply it to MVSC to exploit high-order correlation and
propose an efficient algorithm that has good convergence.
The main contributions of our work are summarized as
follows.

1) We study the weighted tensor Schatten p-norm
minimization (WTSNM) based on t-SVD, and propose
an efficient algorithm to solve WTSNM, which has good
convergence. The existing weighted tensor nuclear norm
based on t-SVD can be considered as a special case of
our model.

2) Applying WTSNM to MVSC, we propose a novel tensor
low-rank constraint MVSC method. Our method attains
a good affinity matrix, which well characterizes both
the relationship between data and high-order information
embedded in different views.

3) Our method integrates the coefficient matrix learn-
ing and spectral clustering into a unified framework.
Thus, the learned coefficient representation well char-
acterizes the cluster structure and encodes discriminant
information.

II. MULTIVIEW SUBSPACE CLUSTERING

Multiview clustering has become an active topic in pattern
analysis and artificial intelligence due to the ubiquitous multi-
view data in real applications [5], [11], [21], [23], [27], [35].
Being the efficiency of learning affinity matrix, which well
characterizes the relationship in data, MVSC has become one
of the most representative clustering techniques. It learns a
unified coefficient matrix or affinity matrix from all views.
The affinity matrix well exploits the relationship in multiview
data. Then, clustering is performed on this affinity matrix.

Self-representation is one of the successful subspace tech-
niques and has been widely used in MVSC. The general
self-representation multiview subspace model is

min
Z∈C

m∑

v=1

∥∥∥X(v) − X(v)Z(v)
∥∥∥

l
+ λ�(Z1, Z2, . . . , Zm) (1)

where ‖ · ‖l denotes the metric of a matrix, and m is the num-
ber of views X(v) and Z(v) (v = 1, . . . , m) denote the data
matrix and self-expression coefficient matrix of the vth view,
respectively. C is a set of constraints on Z(v). Parameter λ bal-
ances the error loss and regularized term �(Z(v)). Applying
different metrics to the first term and second term in the
model (1), the researcher developed many impressive sub-
space clustering methods. For instance, Nie et al. [22] lever-
aged F-norm to characterize the self-representation error and
presented a new MVSC. MVSC integrates self-representation
subspace learning and spectral clustering into a unified frame-
work to learn a common indicator matrix that preserves the
cluster structure shared by different views. To enhance com-
plementary information, Belhumeur et al. [2] leveraged the
Hilbert Schmidt independence criterion (HSIC) to measure the
diversity between Z(v) (v = 1, 2, . . . , m), and proposed the
diversity-induced MVSC method. To well exploit the local
structure, which characterizes the relationship between data,
�1-norm regularization is usually imposed on the coefficient
representation to improve clustering performance [3], [9], [30],
[31], [35], [48]. Inspired by this, Yin et al. [41] employed the
�1-norm to characterize both the sparseness of coefficient rep-
resentations Z(v) and similarity between them. To well exploit
the complementary information, Wang et al. [26] enforced
the different coefficient representations Z(v) to be diverse by
minimizing the �1-norm of the Hadamard product between
them, and proposed the exclusivity-consistency multiview sub-
space clustering (ECMVSC) method, which is robust to the
magnitude of element values.

Although the impressive clustering performance have been
obtained by the above methods, all of them are 1-D,
element-based coefficient representation model, element by
element. Thus, they neglect the spatial structure embedded
in Z(v) [4], [28]. To handle this problem, many low-rank
constraint MVSC methods have been developed [7], [27].
For example, Ding and Fu [7] proposed a low-rank com-
mon subspace method. It imposes the nuclear norm constraint
on both the projection matrix and common representation.
To well exploit both the local structure and spatial struc-
ture, Wang et al. [29] imposed the low-rank constraint on
each coefficient matrix, and then leveraged both the Laplacian
regularization and view-agreement constraint to characterize
the correlation consensus among multiview data. To well
improve robustness of coefficient representations to noise, Wu
and Bajwa [33] learned the affinity matrix from the latent
subspace and presented the latent multiview subspace clus-
tering (LMSC) method with low-rank constraint. Inspired by
LMSC, Xie et al. [35] added the Laplacian regularization
on the latent representation and developed a new clustering
method, which well preserves the local geometric structure.
To well exploit complementary information and high-order
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information, Luo et al. [18] proposed consistency-specificity
multiview clustering by dividing the self-representation coef-
ficient matrix of each view into consistency and specificity,
where the consistency has a low-rank structure and is shared
different views, and the specificity characterizes the inherent
difference in each view.

However, the aforementioned low-rank constraint multiview
clustering methods neglect the correlation consistency among
coefficient representations [6], [45] due to the fact that they
only impose a low-rank constraint on each view’s coeffi-
cient representation directly. Thus, they cannot well exploit
the high-order information and complementary information.
To tackle this problem, Xie et al. [38] developed LT-MSC for
multiview clustering. LT-MSC obtained the affinity matrix by
minimizing the nuclear norm of the tensor-unfolding matrix.
However, the nuclear norm is not a tight convex relaxation
of the Tucker rank [12]. Motivated by the new t-SVD based
tensor nuclear norm [8], [14], [37], recently, many new multi-
view clustering methods have been developed [12], [13], [17],
[38], [39] and obtain impressive clustering performance. Two
of the most representative methods are ETLMSC [12] and
t-SVD-MSC [13]. ETLMSC leverages the tensor robust princi-
pal component analysis (TRPCA) model [17] to learn a robust
3-way clean graph, which well exploits both the high-order
information and complementary information embedded in
multiview data. t-SVD-MSC constructs a 3-way tensor whose
frontal slices are composed of Z(v), and then learns a 3-way
affinity matrix by minimizing the new tensor nuclear norm.
To well preserve the local geometric structure, Xie et al. [38]
added hyper-Laplacian regularization in t-SVD-MSC and
proposed a novel clustering method. However, all of them
execute the coefficient matrix learning and spectral clustering
in two separated steps, resulting in suboptimal performance.
Moreover, they regularize each singular value equally due to
the fact that they use the same parameter to shrink all singu-
lar values in optimizing the tensor nuclear norm minimization.
So the aforementioned methods cannot exploit the significant
difference between singular values, resulting in the instabil-
ity of algorithms. To handle these problems, motivated by
t-SVD-MSC and the new tensor nuclear norm, we studied the
WTSNM and proposed a novel tensor low-rank-constrained
MVSC method. Our method integrates affinity matrix learn-
ing and spectral clustering into a unified framework. Moreover,
our method explicitly exploits the prior information embedded
in singular values in solving tensor nuclear norm minimization.
Thus, the learned coefficient representation, which is shared
by different views, captures the high-order correlation and
complementary information underlying multiview data.

III. NOTATIONS AND PRELIMINARIES

For convenience, we first introduce the notations and defi-
nitions used throughout this article. We use bold calligraphy
letters for third-order tensors, for example, Z ∈ R

n1×n2×n3 ,
bold uppercase letters for matrices, for example, Z, bold low-
ercase letters for vectors, for example, z, and lowercase letters
such as zijk for the entries of Z . Moreover, we denote Z(i)

by the ith frontal slice of Z and Z by the discrete fast

Fourier transform (FFT) of Z along the third dimension, that
is, Z = fft(Z, [], 3). Thus, Z = ifft(Z, [], 3).

Definition 1 [47]: Given tensor Z ∈ R
n1×n2×n3 , denote by

ZT ∈ R
n2×n1×n3 the conjugate transpose of Z , and ‖Z‖F =√∑

ijk |zijk|2.

Definition 2 [47]: Given tensor Z ∈ R
n1×n2×n3 , the block-

diagonal matrix of tensor Z is

bdiag(Z) = diag(Z
(1); Z

(2); · · · ; Z
(n3)

). (2)

Definition 3 [47]: The block circulant matrix of the tensor
Z ∈ R

n1×n2×n3 is defined as

bcirc(Z) =

⎡

⎢⎢⎢⎣

Z(1) Z(n3) · · · Z(2)

Z(2) Z(1) · · · Z(3)

...
...

. . .
...

Z(n3) Z(n3−1) · · · Z(1)

⎤

⎥⎥⎥⎦. (3)

According to Definitions 2 and 3, we have the following
theorem.

Theorem 1 [14], [47]: Given tensor Z , the relationship
between bcirc(Z) and bdiag(Z) is

(Fn3 ⊗ In1)·bcirc(Z)·((Fn3)
−1 ⊗ In2) = bdiag(Z) (4)

where ⊗ is the Kronecker product, In1 ∈ R
n1×n1 and In2 ∈

R
n2×n2 are identity matrices, respectively, and Fn3 ∈ R

n3×n3

is the discrete Fourier transform (DFT) matrix.
Definition 4 [47]: Given tensor Z∈ R

n1×n2×n3 , then

unfold(Z) =
[
Z(1);Z(2); · · · ;Z(n3)

]

fold(unfold(Z)) = Z. (5)

Definition 5 [14]: Given tensor Z ∈ R
n1×n2×n3 and G ∈

R
n2×l×n3 , the t-product between Z and G is H ∈ R

n1×l×n3 ,
that is

H = Z ∗ G = fold(bcirc(Z)·unfold(G)). (6)

The model (6) can be efficiently calculated by two steps. First,
obtain H(i)

=Z(i) · G(i)
, i = 1, 2, . . . , n3. Second, obtain H =

ifft(H, [], 3).
Definition 6 [14]: Given tensor D ∈ R

n1×n2×n3 , if D(i)

(i = 1, 2, . . . , n3) are diagonal matrices, then D is an
f -diagonal tensor.

Theorem 2 [14]: Given tensor Z ∈ R
n1×n2×n3 , then t-SVD

of Z is

Z = U ∗ D ∗ VT (7)

where U ∈ R
n1×n1×n3 and V ∈ R

n2×n2×n3 are orthogonal, and
D ∈ R

n1×n2×n3 is an f -diagonal tensor.
Definition 7: The nuclear norm of Z ∈ R

n1×n2×n3 is
defined as [14] and [47]

‖Z‖� =
∑n3

i=1

∥∥∥Z(i)
∥∥∥∗ =

∑n3

i=1

∑h

j=1
σj

(
Z(i)

)
(8)

where σj(Z(i)
) is the jth singular value of Z(i)

, h =
min(n1, n2).
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IV. WEIGHTED TENSOR SCHATTEN p-NORM

MINIMIZATION

A. Problem Formulation and Objective

Recently, TNNM has been widely used in many applica-
tions, such as multiview clustering, color image denosing,
matrix completion, and so on [13], [17], [32], [37]–[40]. A
general TNNM is

argmin
X∈Rn1×n2×n3

1

2
‖X − A‖2

F + τ‖X‖�. (9)

According to Definition 7 and the relationship between the
time domain and Fourier domain, the model (9) can be con-
verted to Fourier domain to solve. Moreover, according to
Definitions 1 and 7, we have that the model (9) can be finally
divided into the following n3 independent models:

arg min
X (i)

1

2

∥∥∥X (i) − A(i)
∥∥∥

2

F
+

h∑

j=1

τ · σj(X (i)
) (10)

where h = min(n1, n2), i = 1, 2, . . . , n3.
The optimal solution X (i)∗

in (10) can be obtained by
shrinking the singular values σj(A(i)

) via σj
∗(A(i)

) =
max(σj(A(i)

) − τ, 0). It can be seen that all singular vales are
considered to be equally important. However, this is unrea-
sonable in real applications due to the fact that there exists
a significant difference between singular values of a matrix,
and large singular values characterize the main structure of
the matrix. It means that the model (9) neglects this prior
information. To well exploit the salient structure information
embedded in data, we should make the larger singular values
shrink less in tensor nuclear norm minimization. Before intro-
ducing our model, we first introduce the definition of WTSN
as follows.

Definition 8: Given X ∈ R
n1×n2×n3 , h = min(n1, n2),

WTSN ‖X‖ω,Sp of X is defined as

‖X‖ω,Sp
=
(

n3∑

i=1

∥∥∥X (i)
∥∥∥

p

ω,Sp

) 1
p

=
⎛

⎝
n3∑

i=1

h∑

j=1

ωj · σj(X (i)
)
p

⎞

⎠

1
p

(11)

where ωj denotes the jth element of the weighted vector ω,

p is a parameter of power, and σj(X (i)
) denotes the jth sin-

gular value of X (i)
. For the sake of description, we assume

all singular value are in nonincreasing order in our paper.
Obviously, when p = 1, (11) reduces to the weighted tensor
nuclear norm [11], [19].

Then, we propose the WTSNM problem whose objective
function is

argmin
X

1

2
‖X − A‖2

F + τ‖X‖p
ω,Sp

. (12)

According to Definition 8, we have that the model (12)
explicitly considers the significant difference between singular
values by choosing p and ω.

Algorithm 1 Generalized Soft-Thresholding
Input: σ, ω, p, T

1. τGST
p (ω) = (2ω · (1 − p))

1
2−p + ω · p · (2ω · (1 − p))

p−1
2−p

if |σ | ≤ τGST
p (ω) then

TGST
p (σ, ω)=0

else
k = 0, δ(k) = |σ |;
for k = 0, 1, . . . , T do

δ(k+1) = |σ | − ω · p · (δ(k))p−1

end
TGST

p (σ, ω) = sign(σ ) · δ(k)
end
Return TGST

p (σ, ω)

B. Optimization

For solving the WTSNM, that is, the model (12), we first
introduce the following lemmas and theorems.

Lemma 1 (Generalized Soft-Thresholding) [42]: For the
following optimization problem:

min
δ≥0

f (δ) = 1

2
(δ − σ)2 + ω · δp (13)

with the given p and ω, there exists a specific threshold

τGST
p (ω) = (2ω · (1 − p))

1
2−p + ω · p · (2ω · (1 − p))

p−1
2−p .

(14)

We have the following conclusion.
1) When σ ≤ τGST

p (ω), the optimal solution TGST
p (σ, ω) of

(13) is 0.
2) When σ > τGST

p (ω), the optimal solution of (13) is
TGST

p (σ, ω) = sign(σ ) · SGST
p (σ, ω), where SGST

p (σ, ω)

can be obtain by solving SGST
p (σ, ω) − σ + ω · p ·

(SGST
p (σ, ω))p−1 = 0.

We summarize the pseudocode of the generalized soft-
thresholding (GST) in Algorithm 1.

Theorem 3 [36]: Let Y = UY · DY · VT
Y be the SVD of Y ∈

R
m×n, τ > 0 and l = min(m, n), 0 ≤ ω1 ≤ ω2 ≤ · · · ≤ ωl, a

global optimal solution of the following model:

arg min
X

1

2
‖X − Y‖2

F + τ‖X‖p
ω,Sp

(15)

is

	τ ·ω[Y] = UY · Pτ ·ω · (Y) · VT
Y (16)

where Pτ ·ω(Y) = diag(γ1, γ2, . . . , γl) and γi =
TGST

p (σi(Y), τ · ωi), which can be obtained by Algorithm 1.
The fact that a closed-form global minimizer can be found

comes from von Neumann’s trace inequality [20]: {σi(Y)} is
in the nonincreasing order while { ωi} is in the nondecreasing
order.

Theorem 4: Suppose A ∈ R
n1×n2×n3 , l = min(n1, n2), 0 ≤

ω1 ≤ ω2 ≤ · · · ≤ ωl, let A = U ∗S ∗VT . For our model (12),
the optimal solution is

X ∗ = 	τ ·n3·ω(A) = U ∗ ifft(Pτ ·n3·ω(A)) ∗ VT (17)
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where Pτ ·n3·ω(A) is a tensor, and Pτ ·n3·ω(A(i)
) is the ith

frontal slice of Pτ ·n3·ω(A).
Proof: In the Fourier domain and combining the definition

of WTSN, the model (12) can be reformulated as

X ∗ = argmin
X

1

2

∥∥∥X − A
∥∥∥

2

F
+

n3∑

i=1

τ · n3 ·
∥∥∥X (i)

∥∥∥
p

ω,Sp
.

(18)

According to Definition 1, we have

argmin
X

n3∑

i=1

(
1

2

∥∥∥X (i) − A(i)
∥∥∥

2

F
+ τ · n3 ·

∥∥∥X (i)
∥∥∥

p

ω,Sp

)

(19)

where X (i)
is the ith frontal slice of X .

In (19), each variable X (i)
is independent. Thus, it can be

divided into n3 independent subproblems. For the ith (i =
1, 2, . . . , n3) subproblem, we have

X (i)∗ = arg min
X (i)

1

2

∥∥∥X (i) − A(i)
∥∥∥

2

F
+ τ · n3 ·

∥∥∥X (i)
∥∥∥

p

ω,Sp
.

(20)

According to Theorem 3, the solution of (20) is X (i)∗ =
	τ ·n3·ω[A(i)

] = U (i)
Pτ ·n3·ω(A(i)

)V(i)T , which is the ith frontal
slice of X ∗

. Since we obtain global solutions of all subprob-
lems, according to Definition 5, we can easily obtain the global
solution of the optimization problem (12), that is

X ∗ = 	τ ·n3·ω[A] = U ∗ ifft(Pτ ·n3·ω
(
A
)
) ∗ VT (21)

where U = ifft(U , [], 3), V = ifft(V, [], 3).

V. MULTIVIEW CLUSTERING BASED ON WTSNM

A. Problem Formulation

Given multiview dataset {X(1), X(2), . . . , X(m)}, X(v) ∈
R

dv∗N denotes the data matrix of the vth (v = 1, 2, . . . , m)
view; dv and N denote the dimension and number of sam-
ples in the vth view, respectively; and m is the number of
views. Inspired by LRR, the coefficient matrix or affinity
matrix Z(v), which is learned by LRR in the vth view, has
a low-rank structure, and the low-rank structures between Z(v)

(v = 1, 2, . . . , m) are similar. Thus, tensor Z , which consists
of Z(1), Z(2), . . . , Z(m), has a good tensor low-rank struc-
ture. To well exploit this structure and high-order information
embedded in Z , the t-SVD based tensor low-rank constraint
has been widely used in multiview clustering and obtains
impressive experimental results [13], [32], [37], [38].

The existing tensor low-rank constraint methods consider
each singular value equally and shrink all singular values via
the same parameter. However, in real applications, there has
been a significant difference between nonzero singular values
of a matrix, and the first several largest singular values usu-
ally characterize the salient structure information embedded
in the matrix. The significant difference, which is called prior
information, is very important for image denoising, matrix
completion, and so on, but similar investigations for multi-
view clustering have been found to be lacking so far, which

(a) (b) (c)

Fig. 1. Framework of the proposed method. (a) Multi-view data. (b) Multi-
view subspace representation. (c) Tensor construction and the weighted tensor
Schatten p-norm minimization.

Fig. 2. Tensor Z construction.

is one of the motivations behind this work. This degrades the
performance of clustering algorithms significantly in the exis-
tence of noise such as illumination variation. Moreover, the
existing tensor low-rank multiview methods execute the affin-
ity matrices learning and spectral clustering in two separated
steps. Thus, the learned affinity matrices cannot well charac-
terize the cluster structure. This limits the multiview clustering
performance.

To handle these limitations, we propose a new multiview
subspace clustering by using our proposed WTSNM. Fig. 1
shows the framework of the proposed model. We learn the self-
representation coefficient matrix for each view and employ a
tensor low-rank constraint to obtain a robust self representa-
tion, which well exploits both the high-order information and
complementary information, by solving a WTSNM problem,
and then incorporates the spectral clustering into a uni-
fied framework. It helps make the final fusion similarity
matrix characterize the cluster structure and be prominent for
clustering. The objective function is formulated as

min
Z,E(v),F

‖Z‖p
ω,Sp

+ λ‖E‖2,1 + 2αtr(FTLẐF)

s.t. X(v) = X(v)Z(v) + E(v), v = 1, 2, . . . , m (22)

where the lateral slices of tensor Z ∈ R
N×m×N of Z(v), that

is, Z(:, v, :) = Z(v) (see Fig. 2). E(v) ∈ R
dv∗N is the error

matrix of the vth view, and E = [E(1); · · · ; E(m)] can enforce
the column of E(v) in each view to have jointly consistent
magnitude values. LẐ = DẐ − Ẑ is the Laplacian matrix, Ẑ =
(1)/(m)

∑m
v=1 [(|Z(v)| + |Z(v)|T)/(2)] and DẐ is a diagonal

matrix, whose diagonal entries are DẐ(i, i) = ∑
j (Ẑij + Ẑji).

F ∈ R
c∗N denotes the cluster indicator matrix, and c is the

number of clusters. α and λ are two balance parameters.

B. Optimization

Inspired by the inexact augmented lagrange multiplier
(ALM), we introduce an auxiliary tensor variable J and
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rewrite the model (22) as minimizing the following uncon-
strained problem:

L(Z(1), . . . , Z(m),J , E(1), . . . , E(m), F)

= ‖J ‖p
ω,Sp

+ λ‖E‖2,1 + 2αtr(FTLẐF)

+
m∑

v=1

(〈
Y(v), X(v) − X(v)Z(v) − E(v)

〉

+ μ

2

∥∥∥X(v) − X(v)Z(v) − E(v)
∥∥∥

2

F

)

+〈Q,Z − J 〉 + ρ

2
‖Z − J ‖2

F (23)

where the matrix Yv and tensor Q represent two Lagrange
multipliers, and μ and ρ are actually the penalty parameters.

Model (23) can be divided into four subproblems as follows.
Z(v)-Subproblem (Variables E, J , and F Are Fixed):

arg min
Z(v)

2αtr(FTLẐF) + 〈Q,Z − J 〉

+
m∑

v=1

(〈
Y(v), X(v) − X(v)Z(v) − E(v)

〉

+ μ

2

∥∥∥X(v) − X(v)Z(v) − E(v)
∥∥∥

2

F

)

+ρ

2
‖Z − J ‖2

F

= arg min
Z(v)

2αtr(FTLẐF) + 〈Q,Z − J 〉

+
m∑

v=1

⎛

⎝μ

2

∥∥∥∥∥X(v) − X(v)Z(v) − E(v) + Y(v)

μ

∥∥∥∥∥

2

F

+ ρ

2

∥∥∥∥∥Z(v) − J(v) + W(v)

ρ

∥∥∥∥∥

2

F

⎞

⎠+ ρ

2
‖Z − J ‖2

F.

(24)

Denote by P = [P1, . . . , Pj, . . . , PN], where Pj =
[‖F1 − Fj‖2

2; · · · ; ‖FN − Fj‖2
2], Fj is the jth row of F. Then,

we have

2tr(FTLẐF) = tr(PT Ẑ)

= tr

⎛

⎜⎝PT

⎛

⎜⎝
1

m

m∑

v=1

∣∣∣Z(v)
∣∣∣+
∣∣∣Z(v)

∣∣∣
T

2

⎞

⎟⎠

⎞

⎟⎠

= 1

2m

m∑

v=1

tr

(
PT
∣∣∣Z(v)

∣∣∣+ PT
∣∣∣Z(v)

∣∣∣
T
)

. (25)

Then, the model (24) becomes

arg min
Z(v)

α

2m
tr

(
PT
∣∣∣Z(v)

∣∣∣+ PT
∣∣∣Z(v)

∣∣∣
T
)

+μ

2

∥∥∥∥∥X(v) − X(v)Z(v) − E(v) + Y(v)

μ

∥∥∥∥∥

2

F

+ρ

2

∥∥∥∥∥Z(v) − J(v) + W(v)

ρ

∥∥∥∥∥

2

F

. (26)

The solution of (26) is

Z(v)
t

∗ =
(
μ(X(v))

T
X(v) + ρI

)−1

(
μ(X(v))

T
X(v) + (X(v))

T
Y(v) + ρJ(v)

−μ(X(v))TE(v) − W(v)

− α

2m

(
P � sign(Z(v)

t−1) + PT � sign(Z(v)
t−1)

T))
.

(27)

E(v)-Subproblem: In this case, variables Z(v), F, and J are
fixed. Thus, we have

arg min
E

λ‖E‖2,1 +
m∑

v=1

〈
Yv, X(v) − X(v)Z(v) − E(v)

〉

+
m∑

v=1

μ

2

∥∥∥X(v) − X(v)Z(v) − E(v)
∥∥∥

2

F

= arg min
E

λ

μ
‖E‖2,1 + 1

2
‖E − D‖2

F. (28)

The optimal solution is [7]

E∗
:,i =

⎧
⎪⎨

⎪⎩

∥∥D:,i
∥∥

2 − λ
μ∥∥D:,i

∥∥
2

D:,i
∥∥D:,i

∥∥
2 >

λ

μ

0 otherwise

(29)

where D:,i denotes the ith column of D = [D1; · · · ; Dm], Dj =
X(j) − X(j)Z(j) + (1)/(μ)Yj, j = 1, . . . , m.
J -Subproblem (Variables Z(v), E(v) and F Are Fixed):

J ∗ = arg min
J

‖J ‖p
ω,Sp

+ 〈Q,Z − J 〉 + ρ

2
‖Z − J ‖2

F

= arg min
J

‖J ‖p
ω,Sp

+ ρ

2

∥∥∥∥Z − J + Q
ρ

∥∥∥∥
2

F
. (30)

According to Theorem 4, the solution of the model (30) is

J ∗ = 	 1
ρ
·n3·ω

(
Z + 1

ρ
Q
)

. (31)

F-Subproblem (Other Variables Z(v), E and J Are Fixed):
In this case, the model (23) becomes

F = arg min
F

tr
(
FTLẐF

)

s.t. FTF = I, F ∈ R
N×c. (32)

The optimal solution F consists of the eigenvectors corre-
sponding to the c smallest eigenvalues of LẐ.

Finally, we summarize the pseudocode in Algorithm 2.

C. Convergence Analysis

The existing works [8] and [12] have demonstrated that
when the number of block variables is more than 2, it is still
an open problem to prove the convergence of inexact ALM.
In Algorithm 2, we have four block variables E, J , F, and
Z . Thus, we cannot prove the convergence of our proposed
algorithm. However, inspired by the theoretical results in [8],
our proposed algorithm is considered to be converged if the
following two conditions are satisfied. First, in the model (22),
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Algorithm 2 WTSNM for Multiview Clustering

Input: Given Multi-view data: X(1), X(2), . . . , X(m), λ, ω,
and cluster number K.
Output: Clustering result C.
Initialized: Z(v) = 0, E(v) = 0, Y(v) = 0, i = 1, . . . , m,
J = 0,Q = 0, μ = 10−5, ρ = 10−4, η = 2, μmax =
ρmax = 1010, ε = 10−7.
while not converge do
(1) Update Z(v), (v = 1, 2, · · · , m) by (27);
(2) Update E by (29);
(3) Update Y(v), (v = 1, 2, · · · , m) by Y(v) = Y(v) +
μ(X(v) − X(v)Z(v) − E(v));
(4) Obtain Z = �(Z(1), Z(2), . . . , Z(m));
(5) Update J by (31);
(6) Update Q by Q = Q + ρ(Z − J );
(7) Update F by (32);
(8) Update parameters μ and ρ : μ = min(ημ,μmax), ρ =
min(ηρ, ρmax);
(9) Obtain (J(1), J(2), . . . , J(m)) = �−1(J );
(10) Check the convergence conditions:∥∥X(v) − X(v)Z(v) − E(v)

∥∥∞ < ε &
∥∥Z(v) − J(v)

∥∥∞ < ε;
end
(11) Obtain the affinity matrix by
S = 1

m

∑m
v=1(

∣∣Z(v)
∣∣+
∣∣∣Z(v)T

∣∣∣);
(12) Output C via performing spectral clustering on S.

Fig. 3. Convergence curves on the Caltech-101 database.

the dictionary matrix should be of full common rank. Second,
errork = ‖(Z t, Et, Ft) − LZ,E,F‖2

F is monotonically decreas-
ing, where Z t, Et, Ft is the solution at the tth iteration in
Algorithm 2, and LZ,E,F denotes the solution by minimiz-
ing the model (23) with respect to (w.r.t.) Z , E, and F
simultaneously. The first condition can be satisfied by orhogo-
nalizing the columns of X(v)T

[21]. For the second condition,
the convexity of the Lagrangian function could guarantee its
validity to some extent according to the work of Eckstein
and Bertsekas [8]. Therefore, Algorithm 2 should have good
convergence properties. To further show the convergence,
Fig. 3 lists the reconstruction error ‖X(v) − X(v)Z(v) − E(v)‖∞
and variable error ‖Z(v) − J(v)‖∞ versus the number of
iterations on the Caltech-101 database. It can be seen
that our proposed algorithm has good convergence in the
experiments.

D. Complexity Analysis

The computational complexity mainly focuses on four
unknown variables (Z(v), J , E and F). For solving Z(v), J ,
E and F, the complexities are O(mN2dv), O(mN2 log(mN) +
m2N2), O(mN2) and O(N3), respectively, where m is the
number of views, N is the number of samples in each view.
Considering number of iteration T and the fact m 
 N,
the computational complexity of our proposed method is
O(T(N3 + mN2dv + mN2 log(mN))).

VI. EXPERIMENTAL RESULTS AND ANALYSIS

A. Database and Competitors

1) Database: We leverage the different clustering tasks to
evaluate the performance of our method in the experiments.
These different tasks involve the following five databases.

1) Yale Database1: It includes 15 persons with 165 gray
images. Eleven images per person have different light-
ing, expressions, and occlusion changes. In the exper-
iments, we leverage the way as in [18] to select three
types of features as different views. They are LBP fea-
tures with 3304 dimension, intensity features with 4096
dimension, and Gabor features with 6750 dimension.

2) Caltech-101 Database [15]: It includes 101 categories
with 8677 images. Each class contains about 40–
800 images. In the clustering experiments, the gallery
includes 1474 images belonging to seven classes.
These classes are Face, Garfield, Stop-sign, Motorbikes,
Snoopy, Windsor-Chair, and Dolla-Bill. We extract three
types of features as different views. They are HOG fea-
tures with 620 dimension, sift features with 2560, and
LBP features with 1160 dimension.

3) Scene-15 Database [14]: This database includes 15
scene categories with 4485 images. All images are
derived from a wide range of indoor and outdoor envi-
ronments, such as industrial, bedroom, kitchen, office,
store, etc. In the experiments, we extract three types of
image features via the way in [37], and consider them
as different views.

4) Notting-Hill (NH) Database [46]: NH is derived from
the movie “Notting Hill” and has 4660 faces of five main
cats in 76 tracks. In the experiments, we construct the
gallery by randomly selecting 110 images of each cast,
and then leverage the way as in [18] to select three types
of features as different views. They are Gabor, LBP, and
intensity features.

5) ORL Database2: This gallery contains 40 distinct sub-
jects. Each subject has ten images sampled under differ-
ent time with varying facial expression and lighting.

2) Competitors: To assess our method, we leverage six
metrics to estimate the clustering performances on the afore-
mentioned five databases. The six metrics are purity, accuracy
(ACC), recall, normalized mutual information (NMI), adjusted
rand index (AR), and F-score. In the following experiments,

1http://vision.ucsd.edu/content/yale-face-database
2http://www.uk.research.att.com/facedatabase.html
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(a) (b)

Fig. 4. Results of our method versus α and λ on the Yale dataset (p = 0.5
and ω = [0.5, 5, 100]). (a) ACC. (b) NMI.

(a) (b)

Fig. 5. Results of our method versus α and λ on the Scene-15 dataset (p = 1
and ω = [1, 10, 100]). (a) ACC. (b) NMI.

we select spectral clustering, which is one of the represen-
tative single-view clustering methods, and six representative
multiview clustering methods, such as MLAN [21], LT-
MSC [43], CSMSC [18], ETLMSC [32], RMSC [34], and
t-SVD-MSC [37]. For spectral clustering, we perform spec-
tral clustering on all views, respectively, and list the best
performance. This process is called SC in the following exper-
iments. Moreover, we also show the performance of spectral
clustering on the concatenated view features. This process is
termed as feature in the following sections.

3) Parameter Setting and Analysis: In the model (22),
parameter λ is used to balance the proportion of error
E, and α reflects the importance of the spectral clus-
tering term. In the following experiments, we tune λ

in the range of [0.05, 0.1, 0.5, 1], α in the range of
[10−8, 10−7, 10−6, 10−5, 0.001, 0.01, 0.1, 1, 10], p ∈ (0, 1],
and weights ωi ∈ (0, 100] to obtain the best results.
Specifically, p is set to 0.5, λ is set to 0.1, α is set to 10−7, and
weighted vector ω is set to [0.5, 5, 100] on the Yale dataset;
p is set to 0.6, λ is set to 0.1, α is set to 10−8, and weighted
vector ω is set to [0.5, 1, 10] on the NH dataset; p is set to
0.9, λ is set to 0.05, α is set to 10−8, and weighted vector
ω is set to [5, 10, 100] on the Caltech-101 dataset; p is set
to 0.9, λ is set to 0.5, α is set to 10−7, and weighted vector
ω is set to [5, 10, 100] on the ORL dataset; and p is set to
1.0, λ is set to 0.1, α is set to 10−8, and weighted vector
ω is set to [1, 10, 100] on the Scene-15 dataset. For all the
compared methods, we follow the experiments settings in the
corresponding papers.

Figs. 4 and 5 show the clustering performances (ACC and
NMI) of our method versus λ and α on the Yale and Scene-
15 datasets, respectively. It can be seen that when λ is fixed,
performances of our method fluctuate remarkably with vary-
ing α, while our method fluctuates small with the fixed α.
Our method obtains the best performance with α = 10−7 and
λ = 0.1 on the Yale dataset and α = 10−8 and λ = 0.1 on
the Scene-15 dataset, respectively. It indicates that α is impor-
tant for improving clustering performance. When α = 0, our

(a) (b)

(c) (d)

Fig. 6. Results of our method on the Yale and Scene-15 datasets, where
p = 0.5, and λ and α are set to 0.1 and 10−7 on the Yale dataset. p = 1, and
λ and α are set to 0.1 and 10−8 on the Scene-15 dataset, respectively. (a)
Results on the Yale dataset. (b) Results on the Scene-15 dataset. (c) Results
on the Yale dataset. (d) Results on the Scene-15 dataset.

method is inferior to the best performance with α = 10−7 on
the Yale dataset and α = 10−8 on the Scene-15 database, but
its performance is still good. When α ≥ 10−6, the clustering
performance of our method remarkably degrades. The reason
may be that tensor low-rank constraint well-exploits high-
order information and complementary information embedded
in different views. Thus, the learned coefficient matrix well
characterizes the relationship between data in itself. Spectral
clustering is leveraged as a regularized term in our model, and
it helps to further make the learned coefficient matrix exploit
the cluster structure. Thus, we should assign a small value
for α. Moreover, the value of spectral clustering term is much
larger than other terms in our model (22), resulting in the
unbalance penalty. So, in the following experiments, we set α

as a small value such as 10−7 on the Yale and ORL databases
and 10−8 on the other three databases.

Fig. 6 lists ACC and NMI of our method versus weighted
vector ω on the Yale and Scene-15 databases, respectively.
From Fig. 6(a) and (b), we have that that our method has a
large fluctuation with varying weighted vector. When other
variables are fixed, our method obtains the best performance
with weighted vector ω = [0.5, 5, 100] on the dataset, and ω =
[1, 10, 100] on the Scene-15 dataset, respectively. It indicates
that weights are important for clustering. The reason is due to
the fact that weights reflect the importance of singular values.
When weighted vector ω is set ω = [1, 1, 1], it means that
all singular values are equally important, in this case, our
method is remarkably inferior to the best performance with
ω = [0.5, 5, 100] on the Yale database and ω = [1, 10, 100] on
the Scene-15 database. The reason is that there is a significant
difference between all singular values, and the larger singular
values are generally associated with some salient parts (main
information) in the data. Thus, we should shrink large singular
values less by assigning small weights. From Fig. 6(c) and (d),
we have that when the first weight or the first two weights
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TABLE I
EXPERIMENTAL RESULTS ON THE YALE, NH, CALTECH-101, ORL, AND SCENE-15 DATASETS

are 0, it means that we did not shrink the largest singular
value or the first two largest singular values. In this case, our
method degrades remarkably and is obviously inferior to the
best performance with ω = [0.5, 5, 100] on the Yale database
and ω = [1, 10, 100] on the Scene-15 database. The reason
may be that the larger singular values may carry undesirable
information, while we do not shrink them. Thus, the learned
coefficient matrix cannot characterize the cluster structure of
data.

B. Experimental Results and Analysis

To well estimate the performance of our method for clus-
tering, we list the experimental results of our method with six
metrics, such as ACC, purity, recall, NMI, F-score, and AR
in the aforementioned five databases. For each experiment, we
repeat ten times and show the mean and corresponding stan-
dard deviation in Table I. Table I lists the results of all the

eight algorithms on the five datasets. From Table I, we have
the following interesting observation.

1) T-SVD-based tensor low-rank methods (t-SVD-MSC
and our method) are remarkably superior to the clas-
sical tensor low-rank method LT-MSC. The reason may
be that LT-MSC is based on the Tucker tensor decom-
position, which is not a tight convex relaxation of the
Tucker rank, while t-SVD-based tensor decomposition
is an effective convex relaxation of �1-norm. Thus,
the coefficient matrix, which is learned by our method
and t-SVD-MSC, well characterizes the complementary
information and high-order information embedded in
multiview data.

2) Except for LT-MSC, tensor low-rank methods are supe-
rior to the other multiview clustering methods. This
is probably because that tensor low-rank methods
directly take into account the high-order correlation
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embedded in multiview data. Moreover, the complemen-
tary information among different views can be explored
more efficiently and thoroughly by the tensor low-rank
methods.

3) Our method is remarkably superior to the other seven
methods on the five databases. For example, on the Yale
dataset, our method indicates a significant increase of
12.0%, 7.4%, 11.1%, 15.3%, 12.3%, and 16.3% w.r.t.
ACC, NMI, purity, F-score, recall, and AR, respectively,
compared to the second best method t-SVD-MSC. On the
Scene-15 dataset with 4485 images in three views, our
method shows 8.7%, 3.9%, 5.7%, 7.7%, 6.7%, and 8.4%
of relative improvement w.r.t. ACC, NMI, purity, F-score,
recall, and AR over the second best method t-SVD-MSC.
The reason may be that our method explicitly consid-
ers the contribution of each singular value, that is, the
prior knowledge of matrix in solving the nuclear norm
minimization problem. Moreover, our method integrates
coefficient matrix learning and spectral clustering into a
unified framework. Thus, the learned coefficient matrix
well characterizes the cluster structure.

4) Single-view clustering methods are overall inferior to
multiview clustering methods. The reason may be that
multiview methods may leverage the complementary
information embedded in multiview data, while single-
view methods do not. The multiview method MLAN is
overall inferior to best SC in all single-view data. This
is probably due to the fact that multiview data are com-
posed of heterogeneous features, but MLAN assumes
that all-views data share a coefficient matrix, resulting
in over fitting. Moreover, each view generally has dif-
ferent clustering performance, while MLAN does not
take into account this in the learning coefficient matrix.
The performances of SC on the concatenated multiview
features are overall inferior to the other methods. The
reason may be that heterogeneity in concatenated mul-
tiview features may cause scale issue, and each view
has different role for improving clustering performance.
Moreover, SC cannot well characterize the cluster struc-
ture due to the fact that the concatenated multiview
features contain redundancy.

5) The samples in the Yale dataset include illumination
changes, occlusion (such as sunglasses), etc. Obviously,
the proposed method, respectively, improves by nearly
12.0% and 15.3% over the second best t-SVD-MSC on
ACC and F-score on the Yale dataset. All these results
clearly prove the superior effectiveness and robustness
of our proposed method to illumination and occlusion.

As shown in Fig. 7, we analyze the impact of the power p in
WTSNM on Yale and Scene-15 datasets. One can observe that
the proposed method has the different clustering results (ACC
and NMI) under the different power p, and when p = 0.5
and p = 0.6, we obtain the best clustering results in the
Yale dataset and NH dataset, respectively. Meanwhile, we
find that the power p has a great influence on the clustering
performance. This is because we perform the power processing
strategy on different singular values. By this strategy, we can
make the proposed WTSNM preserve useful information in the

(a) (b)

Fig. 7. Results on Yale and NH datasets, where ω = [0.5; 5; 100], and λ

and α are set to 0.5 and 10−7 on Yale dataset, respectively. ω = [0.5; 1; 10],
and λ and α are set to 0.1 and 10−8 on NH dataset, respectively. (a) Results
on Yale dataset. (b) Results on NH dataset.

(a) (b)

(c) (d)

Fig. 8. (a) Confusion matrices of t-SVD-MSC on Yale dataset. (b) Confusion
matrices of our work on Yale dataset. (c) Confusion matrices of t-SVD-MSC
on Scene-15 dataset. (d) Confusion matrices of our work on Scene-15 dataset.

multiview data, which in turn makes the proposed WTSNM
more flexible and robust to noise information.

To further evaluate the advantage of our method, we visu-
alize the confusion matrices in Fig. 8, which are obtained by
t-SVD-MSC and our method. In Fig. 8, the row and the col-
umn are true and predicted labels, respectively. Herein, the
predicted cluster label calculates by performing the permu-
tation mapping function in ACC. We can see that compared
with t-SVD-MSC, our method wins in almost all categories in
terms of clustering ACC. The reason may be that the learned
representation well encodes the cluster structure in our method.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 9. (a)–(i) Comparison between LRR and t-SVD-MSC with each view and our model in terms of affinity matrix on the Yale dataset. (j)–(l) Final affinity
matrix S = (1/m)

∑m
v=1

∣∣∣Z(v)
∣∣∣+
∣∣∣Z(v)T

∣∣∣.

C. Contributes of Multiview Feature

We analyze the changes of the affinity matrix for all the
views before and after the proposed optimization procedure.
Figs. 9 and 10 present the view-specific affinity matrices,
which are obtained by LRR on the corresponding view data,
and the final affinity matrix on the Yale and Scene-15 datasets,
respectively. We also show the view-specific affinity matri-
ces and the final affinity matrix of our method on the Yale
and Scene-15 datasets, respectively. Obviously, the affinity
matrices of all the views, which are learned by our model,
have the apparent block-diagonal structures, compared with
the corresponding affinity matrix learned by LRR. This is an
evidence that the complementary information and high-order

information are important and can be propagated among all
the views.

Figs. 9 and 10 also present the view-specific affinity matri-
ces and the final affinity matrix of t-SVD-MSC and our method
on the Yale and Scene-15 datasets, respectively. It can be seen
that both t-SVD-MSC and our method have apparent block-
diagonal structures for affinity matrices, but compared with
t-SVD-MSC, the nonblock-diagonal elements in affinity matri-
ces, which are learned by our method, are overall smaller in
specific view and final affinity matrix. It indicates that our
method well characterizes the cluster structure. Moreover, the
block-diagonal structure in affinity matrices, which correspond
to different views, is different. It means that each view has
different roles for improving the clustering performance.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 10. (a)–(i) Comparison between LRR with each view and our model in terms of affinity matrix on the Scene-15 dataset. (j)–(l) Final affinity matrix
S = (1/m)

∑m
v=1

∣∣∣Z(v)
∣∣∣+
∣∣∣Z(v)T

∣∣∣.

VII. CONCLUSION

We studied the WTSNM based on t-SVD, and proposed an
efficient iterative algorithm to solve it. As can be seen, the
existing tensor nuclear norm based on t-SVD can be viewed
as a special case of our method, and our WTSNM can also
be applied to the standard matrix nuclear norm minimization.
Applying WTSNM to MVSC, we developed a novel MVSC
model, which obtains the self-representations and cluster indi-
cator matrix simultaneously by well exploiting the high-order
correlation embedded in multiview data. The extensive exper-
imental results on five widely used benchmarks indicate that
our method is superior to state-of-the-art multiview clustering
methods. In our proposed method, for the sake of simplicity,

we assigned equal weights for all frontal slices. In real appli-
cations, we should assign different weights to different frontal
slices. We will study it our future work.
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