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As we embark on the big data era, numerous unlabeled data has generated increasingly, and thus deep
clustering analysis has become prevalent in artificial intelligence. Yet, most existing deep clustering
methods still have the following demerits: 1) They fail to take cluster-specificity distribution into
account, resulting in suboptimal latent representation. 2) They suffer from the scale issue of the distribu-
tions between the given sample and cluster centers, resulting in unstable clustering performance. 3) They
fail to utilize the obtained clustering labels, resulting in suboptimal clustering performances. To fill these
gaps, we propose a new deep clustering solution, namely Adversarial Self-supervised Clustering With
Cluster-specificity Distribution (ASC2D). Specifically, by imposing the cluster-specificity constraint,
which is measured by the ‘1;2-norm, the learned latent representation well encodes the cluster structure.
Meanwhile, by introducing the thought of adversarial learning, ASC2D well eliminates the gaps between
distributions. Moreover, ASC2D utilize the clustering label to supervise the learning of representation,
where the latter is used in turn to conduct the subsequent clustering. By this way, clustering and repre-
sentation learning are seamlessly connected, with the aim to achieve better clustering performance.
Extensive experimental results show that ASC2D is superior to 14 state-of-the-art baselines on six image
datasets in terms of three evaluation metrics, especially on Fashion-MNIST datasets, ASC2D brings about
4:1% and 7:1% improvement over the best baseline in terms of ACC and NMI metrics.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Deep learning based clustering is one of the active topic in the
field of unsupervised learning due to its outstanding representative
capacity and fast inference speed. One of the most representative
deep clustering methods is deep embedded clustering (DEC) [1].
It learns a nonlinear mapping from a high-dimensional data space
to a lower-dimensional feature space in which it iteratively solves
a clustering objective function. Inspired by DEC, several deep clus-
tering methods have been proposed for image clustering [2–4] and
obtained promising preliminary results.

Recently, ‘1;2-norm regularization has been proven to be an
effective tool to characterize class-specificity distribution in
dimension space [5]. Applying it to the classification tasks of super-
vised learning has been achieved impressive results, but to the best
of our knowledge, similar investigations for deep unsupervised
learning have been found lacking so far, which is one of the moti-
vations behind this work. Meanwhile, existing methods only utilize
Kullback–Leibler (KL) divergence to measure the mismatch of data
distribution and target distribution, which neglects the scale issue1

between the two distributions, resulting in unstable clustering per-
formance. Moreover, existing methods do not make full use of the
information embedded in the learned clustering labels, resulting in
suboptimal latent representations.

Motivated by above insight analysis, we propose a novel deep

clustering method, namely Adversarial Self-supervised Clustering

With Cluster-specificity Distribution (ASC2D). More specifically,
to well exploit the cluster structure, we learn latent representation
with the ‘1;2-norm constraint such that the latent representations
with the same cluster to further have a common distribution in
dimension space while representations with different clusters have
different distribution in the intrinsic dimension space. To deal with
the scale issue1 in different distributions, we introduce the adver-
mall, the
cantly in
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sarial thought of Generative Adversarial Networks (GANs) [6] to
eliminate the gaps between data distribution and target distribu-
tion. Finally, we make good use of the clustering labels to supervise
the learning of latent representation, and the latter is employed in
turn to conduct the subsequent clustering. By this way, the repre-
sentation learning and clustering are seamlessly connected, such
an incorporation enables the overall framework to be trained
towards achieving better clustering results. The main contributions
of this paper are as follows:

� We introduce the ‘1;2-norm constraint to learn latent represen-
tation. Thus, the learned representation well exploits the cluster
structure.

� We introduce an adversarial learning to complement distribu-
tion constraint, which makes the learned data distribution and
representation more effective, thereby achieving superior clus-
tering performance.

� We make full use of the clustering labels to guide the optimiza-
tion of latent representation, which seamlessly encapsulates
representations learning and clustering in a unified framework.

1.1. Notations

For convenience, we first introduce the notations used through-
out the paper. We use bold upper case letters for matrices, e.g., Z,
bold lower case letters for vectors,e.g., z, and upper case letters
such as Zij for the entries of Z. The Frobenius norm of Z is

jjZjjF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd
i¼1

Pk
j¼1

Z2
ij

s
. jjZjj21;2 ¼Pn

i¼1
jjzijj21 ¼Pn

i¼1

Pd
j¼1

Zij

�� �� !2

is the ‘1;2-

norm of a matrix Z 2 R
N�d.
2. Related work

Image clustering targets at partitioning a group of unlabeled
images into several different clusters, such that the images in the
same cluster have high correlation to each other. Owing to its
superiority in processing unlabeled data, clustering has become
an active topic in artificial intelligence field, and it has been widely
applied in various data mining tasks, such as image retrieval [7],
image segmentation [8], image annotation [9] and document anal-
ysis [10].

To date, studies have presented many shallow clustering meth-
ods [11–15]. Despite the promising preliminary results, the perfor-
mance of these shallow clustering methods deteriorates with
large-scale real-world datasets due to unreliable similarity metrics.
To tackle this problem, a naive method is to transform high dimen-
sional data to a low dimensional feature space by applying hand-
crafted feature extraction or dimension reduction techniques.
Then, clustering can be performed on the lower feature space.
Since the feature learning and clustering are two separate pro-
cesses, these hand-crafted features ignore the interconnection
between them, resulting in suboptimal results.

Motivated by the powerful latent representation learning capa-
bilities of deep learning, numerous deep clustering methods have
been proposed, which can be roughly divided into three categories:
auto-encoder based methods, adversarial learning based methods and
the variants of DEC. Next, we will discuss the characteristics of each
category and the corresponding methods.

2.1. Auto-encoder based methods

Auto-encoder (AE) is a classical deep neural network. It aims to
extract low-dimensional latent representation of raw samples via
an unsupervised manner. For example, Yang et al. [16] proposed
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deep clustering network (DCN) by joint deep auto-encoder and
K-Means clustering objective. Huang et al. [17] proposed a deep
embedding network for clustering (DEN) based on deep auto-
encoder, in which the locality-persevering and group sparsity are
simultaneously taken into account. Based on a multi-layer convo-
lutional denoising autoencoder, Dizaji et al. [18] presented a deep
embedded regularized clustering network (DEPICT) by relative
entropy minimization. Pan et al. [19] proposed the deep subspace
clustering networks (DSC-Net). However, they fail to take cluster-
specificity distribution into account, which may result in the
learned representation fail to describe cluster structure. In con-
trast, our proposed ASC2D imposes the cluster-specificity distribu-
tion constraint on latent representation to learn better
representation.

2.2. The variants of DEC

Considering the great progress of DEC in deep clustering, many
variants of DEC have been proposed, e.g., Guo et al. [2] proposed
the improved deep embedded clustering model (IDEC) with local
structure preservation. Guo et al. [20] proposed deep embedded
clustering with data augmentation. Mrabah et al. [3] proposed
adversarial deep embedded clustering to better trade-off between
feature randomness and feature drift. Despite obtained good per-
formances, they neglect the scale issue of the distributions
between the given sample and cluster centers, resulting in unsta-
ble clustering performance. Our proposed ASC2D well minimizes
the gaps between distributions by leveraging the thought of adver-
sarial learning.

2.3. Adversarial learning based methods

The thought of adversarial learning is the core of the Generative
Adversarial Network (GAN), which is one of the most classical deep
neural networks. To date, studies proposed several adversarial
learning based clustering method, e.g., by employing gaussian mix-
ture distribution, Harchaouiet al. [21] match the aggregated poste-
rior of the latent representation, and proposed a deep adversarial
gaussian mixture auto-encoder for clustering (DACEC). Springen-
berg proposed Categorial Generative Adversarial Network for clus-
tering (CatGAN) [22]. Unlike classic GAN, CatGAN enforces
discriminator to classify all samples into k classes, while being
unknown of cluster assignments for samples generated by genera-
tor. By optimizing the mutual information between a fixed small
subset of the GAN’s noise variables and the observation, Chen
et al. [23] proposed the information maximizing generative adver-
sarial nets (InfoGAN). More recently, Zhou et al. [24] presented
deep adversarial subspace clustering (DASC). Mukherjee et al.
[25] proposed latent space clustering in generative adversarial net-
works for clustering (ClusterGAN). Although the impressive clus-
tering results have been obtained by the above methods, they fail
to utilize the obtained clustering labels, resulting in suboptimal
performances. To handle this problem, our proposed ASC2D use
the clustering labels to supervise the optimizing of latent represen-
tation, with the target to obtain better clustering performances.

For more detailed perspective of network architecture, please
refer to [26], which provided a comprehensive review of deep
clustering.
3. Methodology

3.1. Overall framework

Fig. 1 shows the overall framework of the proposed ASC2D.

Given an image dataset xd�d
i 2 X

� �N
i¼1 with C clusters, where d
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Fig. 1. The overall framework of our proposed ASC2D. It is made up of five sub-networks: 1) Convolutional auto-encoder. It aims to learn low-dimension latent
representation. 2) Deep embedding clustering layer. It aims to carry out clustering and obtain clustering labels. 3) Cluster-specificity distribution constraint layer. 4) Self-
supervision mechanism. 5) Discriminator. It helps to implement the thought of adversarial learning.
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and N indicates the width of a image and the number of images.
Inputting the i-th raw image to a multi-layer auto-encoder, we

can obtain the corresponding latent representation z1�dz
i 2 Z

n oN

i¼1
,

where dz is dimension of latent representation. Motivated by a
observation that the cluster assignment matrix can always be rep-
resented by a low dimensional mapping of the high dimensional
data [13], we make full use of clustering labels to self-supervise
the learning latent representation, where the clustering labels is
obtained from the target distribution D2. Meanwhile, to make
the learned representation can well exploit cluster structure, we
imposed the cluster-specificity distribution constraint on latent
representation. Moreover, to eliminate the gaps between distribu-
tions, i.e., effectively solving the scale issue1 between distributions,
we introduce a distribution consistency adversarial regularization.
For ease of explanation, we utilize lj j ¼ 1;2; . . .Cð Þ to represent
the centroid of each cluster. The tradeoff parameters are donated
by k ¼ k1; k2; k3½ �.
3.2. Overall framework

� Convolutional Encoder En and Convolutional Decoder De:

Rd�d ! RC ! Rd�d. Encoder, which consists of three convolutional
layers and two fully connected layers, aims to learn latent repre-
sentations Z of raw data X. We utilize auto-encoder based on the
fact that auto-encoder consistently produces semantically mean-
ingful and well-separated representations on real-world datasets
in many unsupervised learning methods [19,24]. To be specific,
the encoder projects the input data to a low-dimensional represen-
tation Z via a non-linear mapping zi ¼ e xi; hð Þ, where e �ð Þ refers to

the non-linear mapping function and h ¼ W lð Þ;b lð Þ
n o

is the lth

layer’s learnable parameters of encoder En. We attempt to enforce
the latent representations to be an approximately continuous label,
so the dimension of a representation is 1� C, where C is cluster
number. Then, a decoder is exploited to reconstruct the input data
X from low-dimensional representations. To ensure that the latent
features obtained by the encoder are available, the network mini-

mizes the least mean square loss between X and X
�
to update the

learnable parameters of En and De.
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� Deep embedding clustering layer and Self-supervision
mechanism. In this layer, we aim to find a reasonable continuous
cluster assignment matrix to self-supervise the encoder to gener-
ate low-dimensional, compact, approximately continuous repre-
sentations. Motivated by t-SNE [27], which captures the
similarity between two data points, we use the learned latent fea-
ture zi and the centroid lj to characterize the relationship between
data point and cluster centroid. Based on this, we can find a reason-
able continuous distribution D2 to supervise the learning of Z,
where D2 is calculated by the frequency of actual distribution D1

(See Section 3.3). Hence, we utilize this constraint Z�D2k k2F to
guide the auto-encoder to generate more reasonable Z (See Eq.
(6)). Furthermore, in order to improve the latent representations
ability of En, and make the target distribution D2 can be adaptively
updated according to current clustering results, we not only con-
strain the mismatch of representation Z and target distribution
D2, but also minimize the difference between D2 and actual distri-
butionD1 to update learnable parameters of En and the cluster cen-
troid of each cluster.

� Cluster-specificity distribution constraint layer. To well
characterize class structure, in this layer, we aim to make the
learned latent representation with the same cluster to further have
a common distribution in dimension space while representations
with different clusters have different distribution in the intrinsic
dimension space. To this end, we make full use of the good prop-
erty of ‘1;2-norm, and impose this constraint on the representation
Z.

� Discriminator D : RN�K ! 0;1f g. The discriminator, consist-
ing of three fully connected layers, aims to distinguish target distri-
butionD2 (real) and actual distributionD1 (fake), and subsequently
supervise the deep clustering layer to improve clustering perfor-
mance. Although we minimize the error betweenD2 andD1 above,
due to scale issue1, we utilize the adversarial learning to maintain
the diversity between D2 and D1. Motivated by t-SNE, if the data in
two spaces are similar, their distribution should be the same.
Hence, for discriminator, we hope it can distinguish that D1 is
the actual distribution of latent representations and D2 is target
distribution. Then we minimize the adversarial loss to update the
parameters of the discriminator and auto-encoder until the actual
distribution in the latent space and the target distribution get sim-
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ilar, which also shows that the network has learned a satisfactory
representation Z.

3.3. Objective function and implementation

The objective of our model contains five terms covering auto-
encoder loss LAE, distribution consistency adversarial regulariza-
tion loss LD, self-supervision loss LS, distribution consistent loss
LC and cluster-specificity distribution constraint LCSD. The overall
objective of our method is given by

L ¼ min
h;x;l

max
w

LAE þ k1LD þLC þ k2LS þ k3LCSD: ð1Þ

where x; h and w are the parameters of the convolutional encoder,
convolutional decoder and discriminator.

� Auto-encoder Loss w.r.t. h;x. The auto-encoder loss mini-
mizes the least mean square error of reconstructed samples and
the original samples, which is defined as

LAE ¼ min
h;x

1
N

X� g e X; hð Þ;xð Þð Þ2 ¼ min
h;x

1
N

X� X
�� �2

; ð2Þ

where the output of decoder is X
�
¼ g e X; hð Þ;xð Þ;x ¼ W mð Þ;b mð Þ

n o
represents learnable parameters of De inmth layer’s. This loss is used
for training encoder and decoder. It encourages encoder to catch the
essential structure for the latent representation from input data,
and the latent representation recovers the real data exactly. The
encoder En takes X as input and learns latent representations
Z ¼ e X; hð Þ. The decoder reconstructs X from the latent representa-
tion Z.

We minimize the reconstruction error to optimize auto-encoder
network in Eq. (2). Like other unsupervised learning methods, for
getting a reasonably good initial representation, we pre-train the
auto-encoder via X.

Self-supervision loss and distribution consistent loss w.r.t.
h;l. Given an initial estimate of the non-linear mapping zi 2 Z,
we get a latent representation Z. As shown on the left of Fig. 2,
we find the learned latent representation is continuous. In order
to characterize clustering relationship between representation zi
of sample i and cluster centroid lj, we herein define a distinctive
activation function A �; �ð Þ to characterize the distribution between
Z and cluster centroids l. Thus, we have(3)

A zi;lj

� �
¼

1þ jjzi � ljjj2
� ��1

X
j0

1þ jjzi � lj0jj2
� ��1 ; ð3Þ

We define the result obtained by Eq. (3) as the actual distribu-

tion D1 2 RN�C. So, we have d1
ij ¼ A zi;lj

� �
, where d1

ij 2 D1 repre-

sents the probability that clusters sample i into j-th cluster. The
centroid lj of each cluster is defined as the trainable variable.
We employe the centroids calculated by K-means to initialize lj.

It’s challenging to find a reasonable target distribution D2 to
regularize representation Z. Suppose we map latent representation
Z to a low-dimensional W. According to t-SNE, we need to find a
reasonable distribution D2 of W, if representation Z is similar to
low-dimensional W, the actual distribution D1 should be the same
as distribution D2. In our method, we consider the actual distribu-
tion D1 as low-dimensional map W of latent representation Z. We
hope target distribution D2 has the following properties: 1) It can
further emphasize more on the nodes assigned with high confi-
dence. 2) It can strengthen predictions. 3) It can prevent large clus-
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ters from distorting the latent representations of the nodes. Hence,
following [1], D2 is defined as

d2
ij ¼

d1
ij

2
=
X
i

d1
ij

X
j0
d1
ij0
2
=
X
i

d1
ij0

; ð4Þ

where
P
i
d1
ij is soft cluster frequency. In fact, target distribution

intends to further enhance the actual distribution, and it concen-
trates more on the assigned data with high confidence, so D2 is
called ideal target distribution. We can gain the clustering results
directly from the lasted optimized D2, and the label estimated for

sample i can be calculated by li ¼ max Index d2
i

� �
, where

max Index �ð Þ is set to find the index of max probability value in i-
th row of D2.

Now we have obtained two distributions: target distribution D2

and actual distribution D1. Considering the observation that the
cluster assignment matrix can always be represented by a low
dimensional linear mapping of the high dimensional data [13],
we hope the learned latent representation is a kind of approximate
continuous label, we utilize the target distribution D2 to self-
supervise the Z. To this end, we minimize the square of the F-
norm between latent representations Z and continuous prior D2.
Thus, the self-supervision loss is defined as

LS ¼ min
x

Z�D2k k2F : ð5Þ

In the experiments, we observe the loss of Z�D2k k2F term is

much larger than D1 �D2k k2F term, so we set k2 to a small value
for reasonable optimization.

Going back to [27], we constrain the difference between distri-
bution D1 and D2 for the purpose of guiding convolutional auto-
encoder to generate more powerful Z. We hope that D1 can get
close to D2 via iterative training. Thus the distribution consistent
loss can be defined as

LC ¼ min
x;l

D1 �D2k k2F ; ð6Þ

Although the term D1 �D2k k2F can tackle this problem well, it
can only guarantee that the two distribution get similar in some
information, which cannot guarantee the diversity of these two
distributions due to scale issue1. Hence, we introduce the adversar-
ial learning (see Eq. (8)) to supplement this defect.

Cluster-specificity distribution constraint w.r.t. x. For the
learned latent representation, we hope it can it can well character-
ize the cluster structure. Specifically, we hope the learned latent
representation can obtain the intrinsic feature distribution of dif-
ferent clusters. To this end, we impose the cluster-specificity distri-
bution constraint, which is measured by ‘1;2-norm, on the latent
representation, thus, we have

LCSD ¼ min
Z;x

jZj jj21;2 ¼ min
Z;x

Xn
i¼1

jzij jj21 ¼ min
Z;x

Xn
i¼1

Xdz
j¼1

Zij

�� �� !2

: ð7Þ

By minimizing Eq. (7), different elements in squared ‘1-norm of
i-th row zi are competing with each other to survive, and at least
one element in row zi survives (remaining non-zero). By doing
so, some discriminative features are survived for each cluster to
provide certain flexibility in the learned latent representation,
i.e., making Z well preserve the cluster structure.
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Algorithm 1. ASC2D
Latent Representation Z

g. 2. The illustration shows the cluster activation function. We aims to utilize this c
ent representation, in which the corresponding values between 0 and 1.

4

Th
lay

to
Distribution consistency adversarial regularization loss w.r.t.
x;l and w. We leverage discriminator to make sure the diversity
between the actual distribution D1 and the target distribution D2

when optimizing Eq. (6). By feeding back the evaluation informa-
tion, the discriminator can supervise the generator to improve
clustering performance. Specifically, we combine the encoder with
a discriminator to apply a GAN-alike model’s idea in our method.
lus

2

e loss function of generator, i.e., the encoder and the clustering
er, minimizes the likelihood that actual distribution D1 assigns
the fake source, while the discriminator D maximizes the likeli-

hood that D1 is assigned to the fake source, so the loss function of
adversarial learning is

LD ¼ min
x;l

max
w

XN
i¼1

E log D d2
i

� �� �h i
þ E log 1�D d1

i

� �� �h i
: ð8Þ

For all datasets, we employ a three-layer fully connected neural
network as discriminator.

The generator is trained to generate actual distribution D1

which is similar to target distributionD2. TheD is trained to distin-
guish the mismatch between D1 and D2, which can not only make
sure the diversity of D1 and D2, but also help to evaluate the qual-
ity of clustering results. They play a min–max game until conver-
gence. The adversarial loss can assist the encoder En in mapping
a given sample X to a desired output Z. Thus, the combination of
adversarial learning and above constraint further ensures the enco-
der project the input to a desired output, i.e., generating effective
sample representation and satisfactory performance. Due to the
adversarial training may usually suffer from the stability issue as
widely discussed in GAN models, and the network architecture of
discriminator D is shallower than auto-encoder, in our method,
we alternately update D and auto-encoder for 3 times and 1 time
within each epoch respectively. We report a brief implementation
of ASC2D in Algorithm 1.

4. Experiments

4.1. Datasets and experimental settings

4.1.1. Datasets
Two handwritten digit datasets, i.e., MNIST [28] and USPS2, one

products dataset, i.e., Fashion-MNIST [29], and two face datasets,
i.e., FRGC-v2.03 and Youtube-Face (YTF) [30] are used to verify
the effectiveness of our method with three frequently-used mea-
sures, i.e., Accuracy (ACC), Normalized Mutual Information (NMI)
[31] and running time (T). Brief statistics of the datasets are shown
in Table 1. Note that image clustering aims to partition a group of
unlabeled image into several different clusters. Therefore, for all
datasets, all image data are assigned to train the overall network.

4.1.2. Experimental settings
In our experiment, all network parameters and their values are

listed in Table 2. For the proposed method, we implement it in Ten-
Actual Distribution            

ter activation function to obtain a reasonable and continuous actual distribution of



Table 1
Descriptions of datasets, where ] means the number of.

Dataset Attribute dim ] Categories ] Samples

MNIST-full [28] 28� 28� 1 10 70;000
MNIST-test [28] 28� 28� 1 10 10;000
Fashion-MNIST [29] 28� 28� 1 10 70;000
USPS2 16� 16� 1 10 11;000
FRGC31 32� 32� 3 20 2;462
YTF [30] 55� 55� 3 41 10;000

Latent Representation Z

Target DistributionActual Distribution

Mapping Mapped Representation
(High Dimension) (Low Dimension)

Fig. 3. The illustration shows the method to calculate D2.
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sorFlow 1:13:1 platform based on Python 3:6. All the experiments
(including some baseline algorithms) are conducted on a machine
with two NVIDIA Tesla P100-PICE GPUs, the Intel(R) Xeon(R) Gold
6230 CPU and 128 GB RAM. The visualizations of experimental
results are processed on MATLAB R2020a. The Adam optimization
algorithm [32] is adopted to optimize the proposed ASC2D. The
encoder consist of three convolutional layers and a fully connected
layer, and their kernel size of convolutional layers are always set to
5� 5;5� 5 and 3� 3 with stride ¼ 2, respectively. A symmetrical
structure to encoder is set for decoder. We utilize ReLU activation
function for all layers of convolutional auto-encoder. For the dis-
criminator D, we utilize three fully connected layers with
2000 ! 2000 ! 1 output neurons, where ReLU activation function
is employed for the first two hidden layers and Softmax activation
function is employed for output layer. For all datasets, in order to
get reasonably good initial representation parameters, we pre-
train the auto-encoder network via Eq. (2).

4.2. Comparison methods

We compare the proposed method with 14 clustering methods
including K-means [11], spectral embedded clustering (SEC4) [13],
DEC5 [1], IDEC6 [2], joint unsupervised learning (JULE) [33], DEPICT
[18], DSC-Net7 [19], deep Spectral Net [34], deep spectral clustering
using dual auto-encoder network (DSCDAN8) [35], DACEC [21],
CatGAN9 [22], InfoGAN [23], ADEC [3] and ClusterGAN10 [25].

For fair comparison, we utilize the same datasets provided by
[33,18] with same pre-processing method. For all datasets except
Fashion-MNIST, the results of K-means, JULE and DEPICT are
obtained from [18]. For SEC, the results on MNIST-full and
MNIST-test datasets are also obtained from [18]. For DEC, the
results on MNIST-full, MNIST-test and USPS datasets are obtained
from [18]. For IDEC and DSCDAN, the results of all datasets are
4 urlhttps://github.com/xdweixia/Spectral-embedded-clustering.
5 urlhttps://github.com/HaebinShin/dec-tensorflow.
6 urlhttps://github.com/XifengGuo/IDEC.
7 urlhttps://github.com/panji1990/Deep-subspace-clustering-networks.
8 urlhttps://github.com/xdxuyang/Deep-Spectral-Clustering-using-Dual-Autoenco

der-Network.
9 urlhttps://github.com/xinario/catgan_pytorch.

10 urlhttps://github.com/sudiptodip15/ClusterGAN.
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obtained from [35], except FRGC and YTF datasets. The results of
SpectralNet are obtained from [35]. The results of InfoGAN and
ClusterGAN on MNIST-full and Fashion-MNIST are obtained from
[25]. For Fashion-MNIST dataset, the results of K-means, JULE
and DEPICT are obtained from [35]. The results of ADEC is used
from [3]. Besides, for aforementioned compared methods, if the
clustering results of their methods on some datasets are not
reported in their corresponding paper, we run their corresponding
released code with hyper-parameters mentioned in their papers,
and the results are marked by (H) in the upper right corner. When
the code is not publicly available, or running the released code is
not practical, we put (–) instead of the corresponding results. We
report the mean values of the two metrics for each algorithm after
executing 10 times in Table 3, the running time results of some
typical deep clustering methods are reported in Table 4.

4.3. Experiment results and analysis

Tables 3 and 4 list the results of baselines on six datasets. From
Tables 3 and 4, we have the following interesting observations:

� In general, the proposed ASC2D achieves satisfactory clustering
performance on three clustering tasks, i.e., handwritten digits
recognition, products recognition and face recognition. This
shows that ASC2D has the ability to handle large-scale and com-
plex image data in reality.

� Comparing the experimental results with the shallow methods,
i.e., K-means and SEC, ASC2D achieves best clustering results.
The reason is our method utilizes deep convolutional auto-
encoder, which can better learn image representation so that
the encoder of generator can easily deal with the complex hand-
written images (shifting, rotation and so on).

� Comparing with DEC and IDEC, our proposed achieves the best
results on all datasets in both ACC and NMI metrics. This is
probably because that ASC2D constrains the latent representa-
tions to be a kind of compact, continuous label via self-
supervision. Moreover, we introduce the adversarial learning
between two distributions, which can help deal with scale
issue.

� On the MNIST-test and USPS dataset, our method does not seem
to perform as well as ADEC on ACC metric, the reason may be
that ADEC employed the good property of data augmentation.
Previous works [20,36] have proved that data augmentation
based on prior knowledge leads to better clustering results.
However, from Table 4, it can be seen that our proposed ASC2D
is more efficient than ADEC.

� For a comprehensive comparison, ASC2D achieves remarkable
improvements comparing with these GAN-based clustering
approaches. For example, on the Fashion-MNIST datasets, the
accuracy of our method is 7:3% at least higher than that of
the best GAN-based approach Cluster-GAN, this is because
when optimizing latent representation, our proposed ASC2D
take cluster-specificity distribution into account, which helps
to make the learned representation well preserve the cluster
structure.

� As reported in Table 4, we can see that our method is faster than
other comparison methods when dealing with large-scale
image data. This performance again demonstrates the practical-
ity of our method for real-world image clustering tasks.

4.3.1. Sensitivity analysis
In ASC2D, there are three tradeoff parameters k1; k2 and k3. For

convenience, we herein test the sensitivity of ASC2D w.r.t. the
parameter k1 of adversarial learning and ratio k2 of self-
supervision constraint term. We first analyze the sensitivity of
the parameter k1. The tested range is 0;1½ �. The ACC and NMImetric



Table 2
Details of networks parameters, where ] means the number of.

Parameters Value Parameters Value ] channel of G Value

k1 0:5 Learning rate of pre-train 3� 10�3 Encoder-1/decoder-3 32

k2 10�4 Learning rate of auto-encoder 3� 10�3 Encoder-2/decoder-2 64

k3 10�5 Learning rate of D 10�3 Encoder-3/decoder-1 128

Table 3
Clustering results of various methods on six datasets. Best results are highlighted in bold. ‘‘ - -” means the results are unavailable from the corresponding paper or code. The data
marked with I in the upper right corner is obtained by running the code provided by the author.

Dataset MNIST-full MNIST-test Fashion-MNIST USPS FRGC YTF

Method n Metric ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

K-means [11] 0.534 0.500 0.547 0.501 0.474 0.512 0.460 0.450 0.243 0.287 0.560 0.752
SEC [13] 0.804 0.779 0.815 0.790 – – 0.732⁄ 0.691⁄ 0.443⁄ 0.544⁄ 0.591⁄ 0.757⁄
JULE [33] 0.964 0.913 0.961 0.915 0.563 0.608 0.950 0.913 0.461 0.574 0.684 0.848
DEC [1] 0.844 0.816 0.859 0.827 0.574⁄ 0.627⁄ 0.619⁄ 0.586⁄ 0.425⁄ 0.561⁄ 0.422⁄ 0.602⁄
IDEC [2] 0.881 0.867 0.846 0.802 0.586⁄ 0.624⁄ 0.759⁄ 0.777⁄ 0.453⁄ 0.576⁄ 0.445⁄ 0.626⁄
DEPICT [18] 0.965 0.917 0.963 0.915 0.529 0.557 0.964 0.927 0.470 0.610 0.621 0.802
DSC-L2 [19] 0.715⁄ 0.704⁄ 0.717⁄ 0.700⁄ 0.578 0.572 0.689⁄ 0.735⁄ 0.429⁄ 0.512⁄ 0.568⁄ 0.741⁄
SpectralNet [34] 0.971 0.924 0.773 0.760 – – – – – – 0.685 0.798
DACEC [21] 0.965 0.952 0.953 0.932 – – 0.934 0.903 – – – –
CatGAN [22] 0.957⁄ 0.936⁄ 0.949⁄ 0.924⁄ 0.625⁄ 0.643⁄ 0.921⁄ 0.893⁄ – – – –
InfoGAN [23] 0.870 0.840 0.852⁄ 0.834⁄ 0.610⁄ 0.590⁄ 0.840 0.813 0.440⁄ 0.564⁄ 0.640⁄ 0.835⁄
ADEC [3] 0.986 0.961 0.985 0.957 0.586 0.662 0.981 0.948 – – – –
ClusterGAN [25] 0.950 0.890 0.946 0.919 0.630⁄ 0.640⁄ 0.934 0.903 0.450⁄ 0.569⁄ 0.650⁄ 0.837⁄
DSCDAN [35] 0.978 0.941 0.980 0.946 0.662 0.645 0.869 0.857 0.356⁄ 0.519⁄ 0.691 0.857
ASC2D 0.988 0.973 0.980 0.969 0.703 0.716 0.969 0.986 0.510 0.667 0.780 0.896

Table 4
Comparison of the execution times (in seconds) of different deep clustering approaches on six datasets.

Dataset MNIST-full MNIST-test Fashion-MNIST USPS FRGC YTF

JULE [33] 28800.59 1350.27 26332.58 1224.92 1105.65 5987.25
DEC [1] 1674.46 1606.9 1621.57 1474.08 1750.82 2425.62
IDEC [2] 1914.61 1673.26 1806.32 1488.46 1773.68 2535.73
DEPICT [18] 11045.32 1325.43 9954.61 1257.64 850.72 2155.29
ADEC [3] 10249.55 9983.41 10156.32 8216.20 – –
ClusterGAN [25] 33285.71 – 34045.11 – – –
DSCDAN [35] 2047.4 2100.22 2003.77 1977.76 1310.45 1215.53
ASC2D 1288.05 1037.48 1098.61 821.82 760.84 2935.80

Fig. 4. Sensitivity analysis of parameter k1 in ASC2D.
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values on MNIST-full and FRGC datasets of different k1 2 0;1½ � are
shown in Fig. 4, from which we can observe that our method per-
forms stably in a wide range of k1. When we make this experiment,
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the parameter k2 is a constant (10�4). Next, we test the sensitivity
of the parameter k2, in which we set k1 ¼ 0:5. Due to the fact that

the self-supervision constraint term Z�D2k k2F in Eq. (5) is a huge



Fig. 5. Sensitivity analysis of parameter k2 in ASC2D.

Table 5
The clustering results of different versions of ASC2D on six datasets, where � denote the network does not contain discriminator network D and U is exactly the opposite.

Dataset MNIST-full MNIST-test Fashion-MNIST USPS FRGC YTF

Metric ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

� 0.976 0.962 0.965 0.953 0.688 0.665 0.951 0.979 0.456 0.579 0.733 0.865
U 0.988 0.973 0.980 0.969 0.703 0.716 0.969 0.986 0.510 0.667 0.780 0.896

Fig. 6. We visualize the actual distribution and target distribution in adversarial learning phase of a random ten samples of fashion-MNIST dataset. To make the results more
obvious, we take the fourth sample as an example to visualize the changes with training epochs.
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number, so we set k2 2 10�7;5� 10�2
h i

to keep the objective bal-

anced. As shown in Fig. 5, our method achieves stably performance
in a wide range of k2. When k21 is bigger than 5� 10�3, the cluster-
ing loss can’t maintain balance among these terms in total objec-
tive function, which lead to bad clustering results. Therefore, the
default values of the parameter k1 and k2 are recommended to be
set to 0:5 and 10�4, respectively.

4.4. Discussions of adversarial learning strategy

According to model (1), we discard the discriminator networks
D for proving the effectiveness of adversarial learning strategy.
Hence, for the version without discriminator network, its objective
can be represented as

L ¼ min
x;h;l

LAE þLC þ k2LS þ k3LCSD; ð9Þ
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where k2 and k3 are two tradeoff parameters. For a fair comparison,

for model (9), we tune k2 and k3 in range of 10�7;5� 10�2
h i

to gain

the best clustering results. We run the version with discriminator
network and the version without discriminator network with 10
random trials and report the average performance in Table 5.
4.4.1. Performances
As reported in Table 5, w.r.t. different training strategies, we

find that the performance when adding D2;D1 adversarial learning
outperforms the methods without D2;D1 adversarial learning on
both two clustering quality measures, especially in Fashion-
MNIST, FRGC and YTF dataset. As they utilize the same network
for latent representation learning, the better performance of the
version with discriminator network is benefited from adversarial
learning between actual distribution D1 and target distribution



Fig. 7. The time costs of our method with and without the adversarial learning.
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D2, which is effective at learning better latent representation Z
thereby improving clustering performance.

4.4.2. Visualization
As reported in Fig. 6, we visualize the target distribution and

actual distribution of a random 10 samples obtained from
fashion-MNIST dataset during adversarial learning, where the left
color 3-D bar shows the 10 samples cluster assignment D1 (above)
and target distribution D2 (below). The right 2-D bar clearly shows
the distributions D1 and D2 of the sixth sample. It can be seen that
the distribution difference of D1 and D2 becomes smaller and
smaller. As aforementioned, we hope the scale issue1 can be tack-
led. That is to say, actual distribution can get close to target distri-
bution with diversity, that means the clustering performance is
excellent. Comparing with each training epoch, we find that our
method performs well. Hence, the D2;D1 adversarial learning in
Eq. (1) is advantageous in the process of learning latent
representations.

4.4.3. Execution times
Finally, to more comprehensively analysis our proposed with

and without the adversarial learning, we evaluate the time costs
of our proposed method with and without the discriminator net-
work. As reported in Fig. 7,w.r.t. different strategies on six datasets,
time costs caused by discriminator network is acceptable. The rea-
son may be that the discriminator network is composed of three-
layer fully connected network, in this case, the number of param-
eters in the discriminator network is much smaller than the deep
convolutional auto-encoder in our method. By contrast, the time
costs of optimizing discriminator network is relatively little.

4.5. Discussions of cluster-specificity distribution constraint

We empirically analyze the effectiveness of cluster-specificity
distribution constraint. The clustering performances for six dataset
are reported in Table 6. We observe that the clustering perfor-
Table 6
Clustering results of our proposed ASC2D with and without cluster-specificity distribution

Dataset MNIST-full MNIST-test Fashio

Method n Metric ACC NMI ACC NMI ACC

ASC2D-without ‘12-norm 0.981 0.967 0.970 0.954 0.689
ASC2D 0.988 0.973 0.980 0.969 0.703

46
mances are improved by the cluster-specificity distribution con-
straint. These results convey that cluster-specificity distribution
constraint is a key technical choice for representation learning
and clustering.

5. Conclusion and future works

We propose a adversarial self-supervised network with cluster-
specificity distribution (ASDCN) for image clustering tasks. Differ-
ent from previous works, to well characterize the cluster structure,
we introduce the cluster-specificity distribution to constrain the
learning of latent representation. Meanwhile, a reasonable adver-
sarial regularization has been adopted to eliminate the gaps
between actual distribution and target distribution. Moreover,
with the aim to achieve better clustering results, ASDCN seam-
lessly connects the clustering and representation learning via
self-supervision. Extensive experiments results demonstrate the
superiority of ASDCN. In the future, we will take data augmenta-
tion into account in deep clustering.
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