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Despite the promising performance, existing regression-based clustering methods still have the following
limitations. (1) They only extract the shallow discriminant features, resulting in unstable clustering per-
formance on data with complex underlying subspaces. (2) It is difficult to optimize the objective due to
the discretization of the elements in the cluster indicator matrix, resulting in suboptimal solution. (3)
They fail to employ the structure prior information embedded in the clustering label matrix, resulting
in suboptimal clustering performance. Targeting at above problems, we propose a novel Regression-
based Clustering network via Combining Prior Information (RC2PI), which consists of a convolutional
auto-encoder, a priori information encoder, and a discriminator. Specifically, the auto-encoder is used
to generate the ideal distribution to relax discrete cluster indicator matrix, which can help obtain optimal
solution. The prior information encoder is employed to exploit the structure prior knowledge embedded
in clustering label matrix, thereby boosting clustering via a self-supervised manner. The discriminator, as
a connector of the above two sub-networks, is used for verifying the embedding process of prior informa-
tion that will guide the auto-encoder to generate a more reliable actual distribution. Extensive experi-
ments demonstrate the effectiveness of RC2PI over state-of-the-art methods.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Linear regression, due to its super effectiveness of processing
high dimensional data, has been successfully applied in many clas-
sic supervised learning areas, e.g., object classification [1] and face
recognition [2]. Nevertheless, there are few studies to utilize the
property of regression to do clustering analysis. In practice, many
high dimensional data may exhibit dense grouping in a low dimen-
sional subspace, and the true cluster indicator matrix of high
dimensional data can be always embedded in a low dimensional
mapping of the data [3,11]. Thus, regression helps to guide the par-
titioning process by modeling the dissimilarity of each cluster in
the low dimensional subspace.

To take advantage of this property, Han et al. [4] developed a
local and global discriminative framework for balanced clustering
(LGBC) via minimizing distribution entropy and the least-squares
regression between cluster indicator matrix and low dimensional
features. However, LGBC uses the continuous low-dimensional fea-
ture to approximate discrete cluster indicator matrix, resulting in
suboptimal solution. To this end, Nie et al. [5] proposed spectral
embedded clustering (SEC) to reduce the divergence between the
cluster indicator matrix and the latent features of the data. SEC
takes into account relaxing the discrete cluster indicator matrix,
but keep the orthogonality intact. Similarly, Gao et al. [6] proposed
a robust regression-based clustering method to tackle cancer gen-
ome data. However, a vital constraint is ignored by [5,6], i.e., all the
elements of the cluster indicator matrix should be nonnegative by
definition.

Although aforementioned regression-based clustering methods
provide impressive results, they still have several limitations. 1)
They suffer from the fact that the model is hard to solve due to
the discretization of the elements in the cluster indicator matrix.
2) They only extract the shallow discriminant features. 3) They
require a postprocessing, e.g., K-Means, to get the final clustering
results, which increases the instability of the original performance.
Recently, numerous deep neural networks (DNNs) based clustering
methods [7–10] have been presented and achieved impressive
clustering performance in extensive experiments. Based on the
multi-layer stacked auto-encoder, these deep clustering models
integrate representation learning and clustering into a unified
framework, which helps to further learn better latent representa-
tions for clustering. Nonetheless, rare studies have been found to
introduce the property of regression to deep clustering models.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2021.03.031&domain=pdf
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Fig. 1. Illustration of prior pseudo label information.
Fig. 2. Illustration of relaxing hard regression constraint.

1 In the whole text, actual distribution refers to low dimensional representation
because its dimension is N � K .
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In addition, the aforementioned methods ignore the prior infor-
mation of label matrix. Although the label matrix is unknown, it is
formed by binary one and zero elements. Given an N � K pseudo
label matrix, each row only has one element 1, while the others
are 0, i.e., the number of one and zero elements are N and
N � K � 1ð Þ, respectively, where N and K are the number of samples
and clusters, respectively. Here, the position of element 1 indicates
its cluster. Even though we do not know where element 1 is
located, this structural prior knowledge of the unknown pseudo
label matrix is still useful. For example, as shown in Fig. 1, on the
right is the true one-hot label matrix, and a column of the matrix
represents the label vector of one sample. For ease of illustration,
suppose there are three clusters, each cluster has three samples.
We can easily get the pseudo label matrix on the left, assuming
all samples belong to the 1-st cluster. Now, for the samples of 1-
st cluster, we get its true label. Only two elements are wrong in
the label vector for other samples (See the red elements on the left
in Fig. 1). More important, we can get the clustering label in each
iteration of the algorithm, the information embedded in such
pseudo label is useful. However, to our best knowledge, similar
investigations for regression-based clustering have been found
lacking so far, which is one of the motivations behind this work.

Inspired by the above insight analysis, we propose a novel deep
clustering model, namely regression-based clustering network via
combining prior information (RC2PI). It incorporates all above con-
cerns into a unified framework. We highlight the contribution of
this work as the following.

� RC2PI uses an auto-encoder to generate the continuous ideal
distribution to relax the discrete cluster indicator matrix, which
can help to obtain a more satisfactory solution.

� RC2PI employs a prior information encoding network to take
advantage of the structure prior knowledge embedded in
pseudo label matrix in clustering tasks, and demonstrate the
superior results over previous works.

� A discriminator is used to verify the embedding process of prior
information that will guide the auto-encoder to generate the
more reliable actual distribution.

� Compared with existing regression-based clustering methods,
RC2PI can directly obtain the clustering label without extra
postprocessing, which improves the stability of the model.

2. Methodology

2.1. Problem formulation

Regression-based clustering [11] is one of the most representa-
tive clustering methods. The objective is

min
W;b;F

kWTXþ 1b� Fk2F þ nkWk2F þ R Fð Þ; ð1Þ

where X 2 Rd�N is the data matrix, W 2 Rd�K is the projection
matrix, b 2 RK is the bias vector, F 2 R

N�K is the clustering label.
n is the penalty coefficient. R Fð Þ represents the constraint on F. By
employing different constraint, several regression-based clustering
methods are proposed, e.g., orthogonal constraint [6], spectral
embedded constraint [5], distribution entropy [4] and so on.
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Problem 1 leverages hard constraint to make the continuous low-
dimensional features to approximate the discrete cluster indicator
matrix F.

However, discrete zero and one elements are too ideal, leading to
a suboptimal solution. Although some methods usually relax the
cluster indicator matrix and keep the orthogonality intact. Under this
circumstance, the relaxed solution may severely deviate from the
true solution and thus degrade the clustering performance. Because
all the elements of the cluster indicator matrix should be nonnega-
tive by definition. In addition, they use a post-processing, e.g.,
K-Means, to get the final clustering results, resulting in suboptimal
performance due to the uncertainty of K-Means. Moreover, they only
extract the shallow discriminant features, resulting in unstable clus-
tering performance on complex real-life data. Finally, they ignore the
prior information embedded in the pseudo label matrix. This struc-
ture prior information is important for clustering.

To integrate all above concerns into one optimization frame-
work, an appropriate continuous distribution is introduced to relax
the discrete cluster indicator matrix, thereby relaxing the hard
regression constraint (See Fig. 2, where discrete one and zero ele-
ments are relaxed to continuous). Meanwhile, we introduce a
structure prior information encoder to embed the prior knowledge,
thereby getting a robust actual distribution to make the RC2PI
more effective and solid.

2.2. The framework of RC2PI

The framework is shown in Fig. 3. RC2PI consists of three com-
ponents: a convolutional auto-encoder, a prior knowledge encoder,
and a distribution consistency discriminator. The details of RC2PI
will be described in the following.

2.2.1. Regression-based clustering
Lex X ¼ x1; . . . ;xNf g denote the samples with K clusters. For

arbitrary data point xi 2 X, the actual distribution1 zi 2 ZN�K can
be extracted by the mapping of a multi-layer convolutional encoder
in Fig. 3. Thus, we have

Z ¼ E X;HEð Þ; ð2Þ
where E �ð Þ refers to the mapping function. HE is the parameters of
the encoder. Hence, it is crucial to find an ideal continuous distribu-
tion P Zð Þ as a cluster indicator matrix to approximate actual distri-
bution Z for regression-based clustering.

Inspired by t-SNE algorithm [12], instead of measuring the sim-
ilarity between data point xi and xj, we employ Student’s t-
distribution as a mapping function to measure the similarity
between zi of data point xi and the centroid of each cluster
lj j ¼ 1;2; . . . ;Kð Þ. Hence, we can calculate the probability distribu-

tion Q Zð Þ 2 RN�K by

qij ¼
1þ jjzi � ljjj2

� ��1

P
j0 1þ jjzi � lj0 jj2
� ��1 ; ð3Þ
,



Fig. 3. The overall framework of RC2PI.

Table 2
Details of the structure of the auto-encoder networks.

Dataset encoder-1/
decoder-3

encoder-2/
decoder-2

encoder-3/
decoder-1

MNIST-Full 4� 4� 50 5� 5� 50 –
MNIST-test 4� 4� 50 5� 5� 50 –
USPS 4� 4� 50 5� 5� 50 –
FRGC 5� 5� 50 5� 5� 50 3� 3� 50
YTF 5� 5� 50 5� 5� 50 3� 3� 50

Table 1
Descriptions of datasets.

Dataset Dimensions Cluster Number Sample Number

MNIST-Full 28� 28� 1 10 70;000
MNIST-test 28� 28� 1 10 10;000
USPS 16� 16� 1 10 9;289
FRGC 32� 32� 3 20 2;462
YTF 55� 55� 3 41 10;000
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where qij 2 Q Zð Þ represents the probability of clustering sample i to
cluster j. We introduce K-Means on actual distribution Z to obtain
the initial cluster centroids lj. Motivated by [13], the highly trust-

worthy ideal continuous distribution P Zð Þ 2 RN�K can be defined as

pij ¼
q2
ij=
P

iqijP
j0q

2
ij0=

P
iqij0

; ð4Þ

where
P

iqij is soft cluster frequency. In fact, ideal distribution P Zð Þ
is an enhancement of the probability distribution Q Zð Þ (Transforming
the high value of Q Zð Þ becomes higher, small value becomes smaller)
and concentrate more on the assigned data with high confidence.

We can calculate the clustering labels directly from the last
optimized P Zð Þ, and the cluster estimated for sample i can be cal-
culated by si ¼ max index pið Þ, where max index �ð Þ is set to find the
index of max probability value in i-th row of P Zð Þ; S 2 RN�K is the
clustering label matrix.

According to Eqs. (2), (4), the objective of regression-based clus-
tering can be defined as

min
HE

LR ¼ k1kZ�P Zð Þk2F ; ð5Þ

where k1 is a tradeoff parameter.
To extract localized actual distribution Z while preserving spa-

tial locality, a convolutional decoder D with a symmetric structure
to the encoder is adopted. Each decoder layer tries to reverse the
process of its corresponding encoder layer. The corresponding

reconstructed sample X̂ can be represented by

X̂ ¼ D E X;HEð Þ;HDð Þ ¼ D Z;HDð Þ; ð6Þ
where D �ð Þ refers to multiple decoder layers andHD is the learnable
parameters of them. We utilize HZ ¼ HE;HDf g to represent the
parameter of auto-encoder. Thus, the auto-encoder reconstruction
loss w.r.t. HZ can be defined as

min
HZ

LAE ¼ 1
N
kX� X̂k2F : ð7Þ

In Eq. (7), we minimize the squared Frobenius norm of the dif-
ference between reconstructed samples and the raw samples to
optimize the auto-encoder network in Fig. 3.

2.2.2. Structure prior information encoding
In real-world applications, the label of the sample is unknown.

For a K � N label matrix, the number of one and zero elements are
N and N � K � 1ð Þ, respectively. This structure prior information is
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known and important. At the beginning, we can easily gain a initial

pseudo label matrix L̂ as shown in Fig. 3, in which each column is a
label vector of one sample, we initialize its first row to element 1.
In this case, for the samples of the first cluster, their labels are cor-
rect, and for the samples of other clusters, there are only two ele-
ments wrong in the label. In the process of network iterative
optimization, we can utilize the clustering labels to update the
pseudo label matrix, thereby well exploiting the structure prior
information embedded in pseudo label matrix. To take advantage
of this prior information, a prior information encoding network is
introduced. In particular, we utilize a multi-layer fully connected

network to encode the discrete pseudo label matrix L̂, then we

can gain another actual distribution L
�
, thus, we have

L
�
¼ EL� L̂;HL�

� �
: ð8Þ

where E
L
� �ð Þ refers to the prior knowledge encoder andH

L
� is the corre-

sponding parameters. To better embed the prior knowledge, we also

constrain the mismatch between the actual distribution L
�
and its corre-

sponding ideal distribution P
L
�� �, where P

L
�� � is calculated by Eqs. (3),

(4). Thus the prior knowledge encoding loss can be defined by

min
HL�

LPI ¼ k1 k L
�
�P L�ð Þk2F

� �
; ð9Þ

where we set same tradeoff parameter k1 for Eqs. (5), (9).



Table 3
Clustering results of various methods on five datasets. Best results are highlighted in bold. � means the results are unavailable from the corresponding paper or code. The data
marked with I in the upper right corner is obtained by running the code provided by the author. RC2PI-U means updating the pseudo label matrix by clustering labels.

Dataset MNIST-full MNIST-test USPS FRGC YTF

Method n Metric ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

K-means [19] 0.534 0.500 0.547 0.501 0.460 0.450 0.243 0.287 0.560 0.752
N-Cuts [20] 0.327 0.411 0.304 0.753 0.314 0.675 0.235 0.285 0.536 0.742
SC-ST [21] 0.311 0.416 0.454 0.756 0.308 0.726 0.358 0.431 0.290 0.620
SC-LS [22] 0.714 0.706 0.740 0.756 0.659 0.681 0.407 0.550 0.544 0.759
SEC [11] 0.804 0.779 0.815 0.790 0.732q 0.691q 0.443q 0.544q 0.591q 0.757q

AC-PIC [23] 0.115 0.017 0.920 0.853 0.855 0.840 0.320 0.415 0.472 0.679

JULE [18] 0.964 0.913 0.961 0.915 0.950 0.913 0.461 0.574 0.684 0.848
DEC [13] 0.844 0.816 0.859 0.827 0.619 0.586 0.425q 0.561q 0.422q 0.602q

IDEC [7] 0.881 0.867 0.846 0.802 0.759 0.777 0.453q 0.576q 0.445q 0.626q

DEPICT [8] 0.965 0.917 0.963 0.915 0.964 0.927 0.470 0.610 0.621 0.802
DSC-L2 [14] 0.715q 0.704q 0.717q 0.700q 0.689q 0.735q 0.429q 0.512q 0.568q 0.741q

SpectralNet [24] 0.971 0.924 0.773 0.760 � � � � 0.685 0.798
DPSC [25] 0.797 0.823 0.806 0.791 � � � � � �
DSCDAN [10] 0.978 0.941 0.980 0.946 0.869 0.857 0.356q 0.519q 0.691 0.857

RC2PI 0.980 0.968 0.981 0.967 0.969 0.965 0.484 0.631 0.735 0.865
RC2PI-U 0.990 0.985 0.988 0.980 0.969 0.985 0.508 0.633 0.755 0.891
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2.2.3. Distribution consistency adversarial

How to ensure the actual distribution L
�
, learned via updating the

prior information encoding networks, is effective? To this end, we
not only control the mismatch between actual distributions Z and L,
but also control the mismatch between the ideal distributions P Zð Þ
and P

L
�� �. Thus, the distribution consistency loss can be defined as

min
HZ ;HL�

Ld ¼ k2 k L
�
�Zk2F þ kP L�ð Þ �P Zð Þk2F

� �
; ð10Þ

where parameter k2 is set to balance other constraint terms.
When optimizing problem (10), due to the scale issue of P Zð Þ

and P
L
�� �,2 the single distribution consistency loss Ld may degrade

the performance. To assure the diversity of two distributions, a dis-
tribution consistency discriminator D is adopted to complement Ld.
The discriminator D consists of a three-layer fully connected net-
work. The goal of the D is to distinguish continuous distributions
P Zð Þ (real) and P Lð Þ (fake), and subsequently better utilize the prior
information. Thus, the adversarial learning loss is introduced as

min
HZ ;H

L
�
max

X
La ¼ 1

2 E log D P Zð Þ
� �� �� �þ 1

2 E log 1�D P
L
�� �� 	� 	
 �

;

ð11Þ
where X is the parameters of discriminator D. For D, we hope it can
distinguish that P Zð Þ is the real ideal distribution, and P

L
�� � is the

fake ideal distribution. We minimize the adversarial loss to update
the parameters of the convolutional auto-encoder and prior infor-
mation encoding network until two distributions get similar, which
also shows that the auto-encoder network has learned a satisfactory
actual distribution Z with reasonable prior information. Thus, we
rewrite the model (10) as

min
HZ ;H

L
�
max

X
Ld ¼ k2 kL � Zk2F þ kP

L
�� � �P Zð Þk2F

� 	
þLa: ð12Þ

By feeding back such supervision to the front, the auto-encoder
and prior knowledge encoder is then enforced to maximize the dis-
criminator loss, leading to better actual distribution Z and cluster-
ing performances. We integrate the above three components into a
unified framework. Therefore, the overall objective can be written as
2 Although the difference value of distribution P
L
�� � and P Zð Þ is small, the

magnitude of element values in a distribution can be dramatically different.
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min
HZ ;HL�

max
X

Ltotal ¼ LAE þLR þLPI þLd þ dkHk22: ð13Þ
where, kHk22 is setting to avoid overfitting, H represents the weights
of all three sub-networks in our framework, and d is a trade-off
parameters.
2.3. Optimization

The optimization step can be roughly divided into two steps: 1)
pre-training the convolutional auto-encoder, 2) fine-tuning the clus-
tering network. To be specific, before solving the problem (13), like
other unsupervised learning methods [14], we pre-train the convolu-
tional auto-encoder networks by minimizing Eq. (7) to produce
semantically meaningful and well-separated initial Z. There are three
blocks of variables in RC2PI, and the objective of the RC2PI is not
jointly convex for all these variables. Therefore, in the phase of
fine-tuning the RC2PI, we optimize problem (13) by employing Alter-
nating Direction Method of Multipliers (ADMM) [15] strategy. To
adopt the ADMM strategy, the optimization is cycled over the follow-
ing three sub-steps: updating prior information encoding networks,
updating the auto-encoder networks, and updating the discriminator
networks. The optimization for each sub-step is as follows:

� Updating prior information encoder. To generate the reason-

able actual distribution L
�
, we first update the parameters H

L
� of

prior information encoder by applying Adam optimizer to opti-
mize LPI and Ld in Eqs. (9), (12) with fixed Z;HZ;P Zð Þ and X.

� Updating the convolutional auto-encoder network. To make
full use of priori information, we update HZ of convolutional
auto-encoder by applying Adam optimizer to optimize

LAE;LR and Ld in Eqs. (7), (5), (12) with fixed L
�
;H

L
�;P

L
�� � and

X.
� Updating the discriminator network. To update the discrimi-
nator, we follow a similar way as updating the convolutional
auto-encoder network. Hence, we should optimize Eq. (11) w.
r.t X with fixed HZ and H

L
�.

The pseudo code of method is summarized in Algorithm 1.



Algorithm 1: RC2PI
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3. Experiments

3.1. Experimental setting

Datasets and Evaluation Metrics. We have chosen two hand-
written digit datasets (i.e., MNIST [16] and USPS) and two face
image datasets (i.e., FRGCv2.0 and Youtube-Face(YTF) [17]) for
showing that the RC2PI works well. For the MNIST-Full dataset,
we concatenate 60;000 training and 10;000 testing samples when
applicable. The MNIST-test dataset consists of 10;000 monochrome
images from MNIST testing set. The USPS dataset contains 9;298
gray images with the size of 16� 16� 1 from envelopes by the
U.S. postal services. The FRGC dataset consists of 20 randomly
selected subjects in [18,8] from the raw dataset. The YTF dataset
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has 41 subjects face images, which were chosen from Youtube-
Face like [17]. We summarize the statistics of these datasets in
Table 1. For fair comparison, all datasets used in the experiments
are consistent with [18,8]. For all tasks, two frequently-used mea-
sures: accuracy (ACC) and normalized mutual information (NMI)
[10]) are adopted.
3.1.1. Comparison methods
We compare RC2PI with eight baseline clustering methods,

including K-Means [19], normalized cuts (N-Cuts) [20], self-
tuning spectral clustering (SC-ST) [21], large-scale spectral cluster-
ing (SC-LS) [22], SEC [11], agglomerative clustering via maximum
incremental path integral (AC-PIC) [23]. In addition, we also evalu-
ate the performance of the RC2PI with several state-of-the-art deep
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clustering models, including deep embedded clustering (DEC) [13],
improved DEC (IDEC) [7], joint unsupervised learning (JULE) [18],
deep embedded regularized clustering (DEPICT) [8], deep subspace
clustering (DSC) [14], deep Spectral Net [24], latent distribution
preserving deep subspace clustering (DPSC) [25] and deep spectral
clustering using dual auto-encoder network (DSCDAN) [10].
3.1.2. Implementation details
In our experiment, detailed convolutional auto-encoder net-

work structure, including kernel size and channel numbers, is
shown in Table 2, we set stride ¼ 2 for all convolutional layers.
The dimension of the latent representation is set to K , where K is
the number of clusters for different datasets. For all layers of
auto-encoder, ReLU activation function is employed. The dimen-
sion of prior information encoder is set K ! 128 ! K for all data-
sets, and the dimension of discriminator networks D is
K ! 64 ! 128 ! 1. Sigmoid activation function is set for output
layer of D. We use TensorFlow 1:13:1 to implement our approach.
For all optimizing steps, the Adam optimizer is adopted. During
pre-training step, the learning rate is set to 3� 10�3. Then we set
the learning rate to 10�2 to update prior information encoder and
the learning rate to 10�3 to update auto-encoder. For all datasets,
we set learning rate to 10�4 to update the discriminator D. In
actual experiments, we observe that the loss values of LR and
LPI are much larger than other terms. In order to optimize reason-
ably, the values of parameters k1 and k2 are set to 1� 10�4 and 1,
respectively. d is set to 1� 10�5 for all datasets.
3.2. Clustering performance

We herein evaluate RC2PI on five widely used datasets, the clus-
tering results are summarized in Table 3. Specifically, our model
achieves the best performance on both handwritten digit cluster-
ing and face image clustering in both two metrics. Comparing with
the traditional clustering model, e.g., K-Means [19], N-Cuts [20],
and spectral clustering [21], RC2PI greatly boosts the clustering
results. The reason is that RC2PI utilizes the convolutional auto-
encoder to extract low dimensional representations, which can
easily deal with the complex handwritten images (shifting, rota-
tion, and so on).

Comparing with the shallow regression-based clustering model
SEC [11], RC2PI behaviors more excellent, this is because RC2PI
introduces an appropriate soft regression constraint to minimize
Fig. 4. Sensitivity analysis of
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the difference between continuous actual distribution and contin-
uous cluster indicator matrix, which can help to learn more pow-
erful representations. Further observation, we find deep
clustering methods (such as DEC [13], JULE [18], DPSC [25])
achieve the highest metric than the shallow models (such as K-
Means [19]), by which we conclude that representation learning
is significant to face image clustering.

RC2PI also demonstrates superior results over previous deep
clustering models, especially DEC [13], IDEC [7], DSC [14], and
Spectral Net [24]. This is because RC2PI makes full use of the signif-
icant spital structure prior knowledge of the pseudo label matrix.
For a comprehensive comparison, RC2PI still brings about 6:4%and
3:4% improvement in terms of ACC, NMI over the DSCDAN [10] on
the YTF dataset.

It is obvious that the clustering performances are improved by
updating the pseudo label matrix with clustering label, these
results indicates that the pseudo clustering label is useful for sub-
sequent clustering tasks.
3.3. Model discussion

Sensitivity Analysis. In this section, we simultaneously adjust
the parameters k1 and k2 on both MNIST-test and YTF datasets to
test the sensitivity of the RC2PI. To illustrate the results conve-
niently, we fix one and vary the other parameter in our experi-
ment. We firstly analyze the sensitivity of the parameter k1 with
fixed k2 ¼ 1. As shown in Fig. 4, we present the clustering perfor-
mance of RC2PI with different tuning parameters k1. We tune the

parameter k1 in the range of 0;10�7; . . . ;1
n o

on MNIST-test dataset

and 0;10�7; . . . ;100
n o

on YTF. We utilize 10�11 to denote value 0 in

Fig. 4, from (a) we can observe that RC2PI is robust because
changes of k1 has a little influence on the clustering performance

in the range of 10�7 � 10�3
n o

. The performance of RC2PI decreases

sharply when k1 is relatively big (e.g., 10�2), the main reason is the
LR and LPI dominate in this case, leading to the difference
between Ld and other constraints are huge. The same situation
also occurs on YTF dataset in (b). Obviously, when the tradeoff
parameter k1 is set properly, both soft regression constraint and
prior information help improve clustering performance.

Then, we test the sensitivity of the tuned parameter k2 with
fixed k1 ¼ 10�4. We vary k2 in the range of
0:005; 0:05; 0:5; 1; 10; 100f g on both MNIST-test and YTF data-
parameter k1 of RC2PI.



Fig. 5. Sensitivity analysis of parameter k2 of RC2PI.

Table 4
Ablation study on five datasets, where denotes discarding the corresponding constraint term and is exactly the opposite.

LAE LR LPI þLd MNIST-full MNIST-test USPS FRGC YTF

ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

0.841 0.756 0.887 0.790 0.776 0.699 0.305 0.402 0.638 0.810
0.970 0.957 0.969 0.949 0.938 0.953 0.469 0.620 0.665 0.833
0.990 0.985 0.988 0.980 0.969 0.985 0.508 0.633 0.755 0.891

Fig. 6. Comparison of the execution times (in seconds) of different deep clustering
methods on five datasets.
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set. As shown in Fig. 5, it intuitively demonstrates that the RC2PI
maintains acceptable performance within a wide range of k2, it also
shows that RC2PI is relatively stable.

Ablation Study. Now we validate the effectiveness of the pro-
posed prior information encoding networks and the soft regression
constraint term via image clustering task on the five datasets.
There are three cases as shown in Table 4.

� Case 1: Reconstruction loss LAE only. It indicates the objective
function only maintain auto-encoder reconstruction loss in Eq.
(7). Under the same hyper-parameters, we perform K-Means
on the actual distribution Z obtained from the pre-trained
auto-encoder. Compared to the results of K-Means in Table 3,
whose input is raw image vector, it can be noticed the convolu-
tional auto-encoder is helpful to clustering because we can use
it to learn more powerful representations with spatial locality
preserved.

� Case 2: Reconstruction loss LAE with regression-based cluster-
ing loss LR. It indicates the network is trained by Eqs. (5) and
(7). Obviously, when we train the auto-encoder with regression
clustering constraint, the clustering performances are relatively
improved. These results demonstrate the soft regression con-
straint is helpful for clustering. This is because for each sample
xi, we utilize a continuous distribution to constrain the actual
distribution zi, the soft regression term for each sample can help
with the actual distribution Z to capture the locally discrimina-
tive information, thereby improving clustering performance
without the manifold assumption.

� Case 3: All constraints are retained. RC2PI produced the best
results. This is because not only prior information helps actual
distribution learning, but also the RC2PI can self-optimize the
continuous distribution P Zð Þ;P L

�� � according to current cluster

centroid l, actual distributions Z and L
�
.

330
� Running Time Comparison. In order to evaluate the efficiency
of our proposed method in dealing with image data, we com-
pare the running time costs of our method with some represen-
tative deep clustering method, i.e., DEC, IDEC, JULE, DEPICT and
DSCDAN. We run our method and the released codes of above
five methods on a machine with two NVIDIA Tesla P100-PICE
GPUs, the Intel (R) Xeon (R) Gold 6230 CPU and 128 GB RAM.
Fig. 6 illustrates the execution times (in seconds) of our pro-
posed method and the comparing methods on five datasets.
As reported in Fig. 6, except for MNIST-Full dataset, we can
see that our method is faster than other comparison methods
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when dealing with image data. This performance again demon-
strates the practicality of our method for real-world image clus-
tering tasks.

4. Conclusion and future work

In this paper, we propose a novel regression-based clustering
framework, named RC2PI, which consists of an auto-encoder, a
structure prior information encoder and a discriminator. The pro-
posed model can obtain more discriminative and satisfactory
actual distribution to boost clustering performance. Comparing
with existing regression-based clustering, RC2PI behaves stable,
because it can directly obtain the clustering result without post-
processing operation, like K-Means. Experimental results on five
image datasets demonstrate the validity of RC2PI and have shown
the advantage over the various clustering methods. In the future,
we’ll take multi-view learning into account.
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